Skip to main content

Solultion of Triangle - Notes, Concept and All Important Formula

PROPERTIES AND SOLUTIONS OF TRIANGLE

1. SINE FORMULAE :

SINE FORMULAE


In any triangle \(\mathrm{ABC}\)
\(\dfrac{\mathrm{a}}{\sin \mathrm{A}}=\dfrac{\mathrm{b}}{\sin \mathrm{B}}=\dfrac{\mathrm{c}}{\sin \mathrm{C}}=\lambda=\dfrac{\mathrm{abc}}{2 \Delta}=2 \mathrm{R}\)
where \(\mathrm{R}\) is circumradius and \(\Delta\) is area of triangle.



2. COSINE FORMULAE :

(a) \(\mathrm{\cos A=\dfrac{b^{2}+c^{2}-a^{2}}{2 b c}}\) or \(\mathrm{a^{2}=b^{2}+c^{2}-2 b c \cos A}\)
(b) \(\mathrm{\cos B=\dfrac{c^{2}+a^{2}-b^{2}}{2 c a}}\)
(c) \(\mathrm{\cos C=\dfrac{a^{2}+b^{2}-c^{2}}{2 a b}}\)



3. PROJECTION FORMULAE :

(a) \(b \cos C+c \cos B=a\)
(b) \(c \cos A+a \cos C=b\)
(c) \(a \cos B+b \cos A=c\)



4. NAPIER'S ANALOGY (TANGENT RULE) :

(a) \(\tan \left(\dfrac{\mathrm{B}-\mathrm{C}}{2}\right)=\dfrac{\mathrm{b}-\mathrm{c}}{\mathrm{b}+\mathrm{c}} \cot \dfrac{\mathrm{A}}{2}\)

(b) \(\tan \left(\dfrac{\mathrm{C}-\mathrm{A}}{2}\right)=\dfrac{\mathrm{c}-\mathrm{a}}{\mathrm{c}+\mathrm{a}} \cot \dfrac{\mathrm{B}}{2}\)

(c) \(\tan \left(\dfrac{A-B}{2}\right)=\dfrac{a-b}{a+b} \cot \dfrac{C}{2}\)




5. HALF ANGLE FORMULAE :

\(s=\dfrac{a+b+c}{2}=\) semi-perimeter of triangle.

(a) (i) \(\sin \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{b c}}\)
(ii) \(\sin \dfrac{B}{2}=\sqrt{\dfrac{(s-c)(s-a)}{c a}}\)
(iii) \(\sin \dfrac{C}{2}=\sqrt{\dfrac{(s-a)(s-b)}{a b}}\)

(b) (i) \(\cos \dfrac{A}{2}=\sqrt{\dfrac{s(s-a)}{b c}}\)
(ii) \(\cos \dfrac{B}{2}=\sqrt{\dfrac{s(s-b)}{c a}}\)
(iii) \(\cos \dfrac{C}{2}=\sqrt{\dfrac{s(s-c)}{a b}}\)

(c) (i) \(\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}=\dfrac{\Delta}{s(s-a)}\)
(ii) \(\tan \dfrac{B}{2}=\sqrt{\dfrac{(s-c)(s-a)}{s(s-b)}}=\dfrac{\Delta}{s(s-b)}\)
(iii) \(\tan \dfrac{C}{2}=\sqrt{\dfrac{(s-a)(s-b)}{s(s-c)}}=\dfrac{\Delta}{s(s-c)}\)

(d) Area of Triangle \(\Delta=\sqrt{s(s-a)(s-b)(s-c)}\)
\(=\dfrac{1}{2} b c \sin A=\dfrac{1}{2} c a \sin B=\dfrac{1}{2} a b \sin C\)
\(=\dfrac{1}{4} \sqrt{2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)-a^{4}-b^{4}-c^{4}}\)



6. RADIUS OF THE CIRCUMCIRCLE 'R' :

RADIUS OF THE CIRCUMCIRCLE 'R'
Circumcentre is the point of intersection of perpendicular bisectors of the sides and distance between circumcentre & vertex of triangle is called circumradius 'R'.
\(\mathrm{R}=\dfrac{\mathrm{a}}{2 \sin \mathrm{A}}=\dfrac{\mathrm{b}}{2 \sin \mathrm{B}}=\dfrac{\mathrm{c}}{2 \sin \mathrm{C}}=\dfrac{\mathrm{abc}}{4 \Delta}\).



7. RADIUS OF THE INCIRCLE 'r' :

RADIUS OF THE INCIRCLE 'r'

Point of intersection of internal angle bisectors is incentre and perpendicular distance of incentre from any side is called inradius 'r'.




8. RADII OF THE EX-CIRCLES :

RADII OF THE EX-CIRCLES

Point of intersection of two external angle and one internal angle bisectors is excentre and perpendicular distance of excentre from any side is called exradius. If \(r_{1}\) is the radius of escribed circle opposite to angle \(A\) of \(\triangle A B C\) and so on then :

(a) \(\mathrm{r}_{1}=\dfrac{\Delta}{\mathrm{s}-\mathrm{a}}=\mathrm{s} \tan \dfrac{\mathrm{A}}{2}=4 \mathrm{R} \sin \dfrac{\mathrm{A}}{2} \cos \dfrac{\mathrm{B}}{2} \cos \dfrac{\mathrm{C}}{2}\)

(b) \(\mathrm{r}_{2}=\dfrac{\Delta}{\mathrm{s}-\mathrm{b}}=\operatorname{stan} \dfrac{\mathrm{B}}{2}=4 \mathrm{R} \cos \dfrac{\mathrm{A}}{2} \sin \dfrac{\mathrm{B}}{2} \cos \dfrac{\mathrm{C}}{2}\)

(c) \(\mathrm{r}_{3}=\dfrac{\Delta}{\mathrm{s}-\mathrm{c}}=\operatorname{stan} \dfrac{\mathrm{C}}{2}=4 \mathrm{R} \cos \dfrac{\mathrm{A}}{2} \cos \dfrac{\mathrm{B}}{2} \sin \dfrac{\mathrm{C}}{2}\)




9. LENGTH OF ANGLE BISECTOR, MEDIANS & ALTITUDE :

If \(m_{a}, \beta_{a} \) & \(h_{a}\) are the lengths of a median, an angle bisector & altitude from the angle A then,
\(\dfrac{1}{2} \sqrt{b^{2}+c^{2}+2 b c \cos A}=m_{a}=\dfrac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}}\)
and \(\quad \beta_{a}=\dfrac{2 b c \cos \dfrac{A}{2}}{b+c}, h_{a}=\dfrac{a}{\cot B+\cot C}\)
Note that \(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\dfrac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)\)



10. ORTHOCENTRE AND ORTHIC TRIANGLE 

ORTHOCENTRE AND ORTHIC TRIANGLE

(a) Point of intersection of altitudes is orthocentre & the triangle KLM which is formed by joining the feet of the altitudes is called the orthic triangle.

(b) The distances of the orthocentre from the angular points of the \(\Delta \mathrm{ABC}\) are \(2 \mathrm{R} \cos \mathrm{A}, 2 \mathrm{R} \cos \mathrm{B}, \) & \(2 \mathrm{R} \cos \mathrm{C}\)

(c) The distance of orthocentre from sides are \(2 \mathrm{R} \cos \mathrm{B} \cos \mathrm{C}\), \(2 \mathrm{R} \cos C \cos A\) and \(2 \mathrm{R} \cos A \cos B\)

(d) The sides of the orthic triangle are a \(\cos A(=R \sin 2 A)\), \(b \cos B(=R \sin 2 B)\) and \(c \cos C(=R \sin 2 C)\) and its angles are \(\pi-2 A, \pi-2 B\) and \(\pi-2 C\)

(e) Circumradii of the triangles \(\mathrm{PBC}, \mathrm{PCA}, \mathrm{PAB}\) and \(\mathrm{ABC}\) are equal.

(f) Area of orthic triangle \(=2 \Delta \cos A \cos B \cos C\) \(=\dfrac{1}{2} \mathrm{R}^{2} \sin 2 \mathrm{~A} \sin 2 \mathrm{~B} \sin 2 \mathrm{C}\)

(g) Circumradii of orthic triangle \(=\mathrm{R} / 2\)




11. EX-CENTRAL TRIANGLE :

EX-CENTRAL TRIANGLE
(a) The triangle formed by joining the three excentres \(\mathrm{I}_{1}, \mathrm{I}_{2}\) and \(\mathrm{I}_{3}\) of \(\triangle \mathrm{ABC}\) is called the excentral or excentric triangle.

(b) Incentre I of \(\triangle \mathrm{ABC}\) is the orthocentre of the excentral \(\Delta \mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3}\).

(c) \(\triangle \mathrm{ABC}\) is the orthic triangle of the \(\Delta \mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3}\).

(d) The sides of the excentral triangle are
\(4 \mathrm{R} \cos \dfrac{\mathrm{A}}{2}, 4 \mathrm{R} \cos \dfrac{\mathrm{B}}{2}\) and \(4 \mathrm{R} \cos \dfrac{\mathrm{C}}{2}\)
and its angles are \(\dfrac{\pi}{2}-\dfrac{A}{2}, \dfrac{\pi}{2}-\dfrac{B}{2}\) and \(\dfrac{\pi}{2}-\dfrac{C}{2}\).

(e) \(\mathrm{II}_{1}=4 \mathrm{R} \sin \dfrac{\mathrm{A}}{2} ; \mathrm{II}_{2}=4 \mathrm{R} \sin \dfrac{\mathrm{B}}{2} ; \mathrm{II}_{3}=4 \mathrm{R} \sin \dfrac{\mathrm{C}}{2}\).




12. THE DISTANCES BETWEEN THE SPECIALPOINTS :

(a) The distance between circumcentre and orthocentre \(=\mathrm{R} \sqrt{1-8 \cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}}\)

(b) The distance between circumcentre and incentre \(=\sqrt{\mathrm{R}^{2}-2 \mathrm{Rr}}\)

(c) The distance between incentre and orthocentre \(\mathrm{=\sqrt{2 r^{2}-4 R^{2} \cos A \cos B \cos C}}\)

(d) The distance between circumcentre & excentre is \(=\mathrm{R} \sqrt{1+8 \sin \dfrac{\mathrm{A}}{2} \cos \dfrac{\mathrm{A}}{2} \cos \dfrac{\mathrm{C}}{2}}\)\(=\sqrt{\mathrm{R}^{2}+2 \mathrm{Rr}_1}\) & so on.




13. m-n THEOREM :

m-n THEOREM
(m + n) cot \(\theta\) = m cot \(\alpha\) – n cot \(\beta\)
(m + n) cot \(\theta\) = n cot B – m cot C



14. IMPORTANT POINTS:

(a) (i) If \(a \cos B=b \cos A\), then the triangle is isosceles.
(ii) If \(a \cos A=b \cos B\), then the triangle is isosceles or right angled.

(b) In Right Angle Triangle :

(i) \(a^{2}+b^{2}+c^{2}=8 R^{2}\)
(ii) \(\cos ^{2} A+\cos ^{2} B+\cos ^{2} C=1\)

(c) In equilateral triangle :

(i) \(\mathrm{R}=2 \mathrm{r}\)
(ii) \(r_{1}=r_{2}=r_{3}=\dfrac{3 R}{2}\)
(iii) \(\mathrm{r}: \mathrm{R}: \mathrm{r}_{1}=1: 2: 3\)
(iv) area \(=\dfrac{\sqrt{3} a^{2}}{4}\)
(v) \(\mathrm{R}=\dfrac{\mathrm{a}}{\sqrt{3}}\)
(d) (i) The circumcentre lies (1) inside an acute angled triangle, (2) outside an obtuse angled triangle & (3) at mid point of the hypotenuse of right angled triangle.
(ii) The orthocentre of right angled triangle is the vertex at the right angle.
(iii) The orthocentre, centroid & circumcentre are collinear & centroid divides the line segment joining orthocentre & circumcentre internally in the ratio \(2: 1\), except in case of equilateral triangle. In equilateral triangle all these centres coincide.



15. REGULAR POLYGON :

Consider a 'n' sided regular polygon of side length 'a'.

(a) Radius of incircle of this polygon \(\mathrm{r}=\dfrac{\mathrm{a}}{2} \cot \dfrac{\pi}{\mathrm{n}}\)

(b) Radius of circumcircle of this polygon \(\mathrm{R}=\dfrac{\mathrm{a}}{2} \operatorname{cosec} \dfrac{\pi}{\mathrm{n}}\)

(c) Perimeter & area of regular polygon
Perimeter \(=\mathrm{n} \mathrm{a}=2 \mathrm{nr} \tan \dfrac{\pi}{\mathrm{n}}=2 \mathrm{nR} \sin \dfrac{\pi}{\mathrm{n}}\)
Area \(=\dfrac{1}{2} \mathrm{nR}^{2} \sin \dfrac{2 \pi}{\mathrm{n}}=\mathrm{nr}^{2} \tan \dfrac{\pi}{\mathrm{n}}=\dfrac{1}{4} \mathrm{na}^{2} \cot \dfrac{\pi}{\mathrm{n}}\)



16. CYCLIC QUADRILATERAL :

CYCLIC QUADRILATERAL

(a) Quadrilateral \(\mathrm{ABCD}\) is cyclic if \(\angle \mathrm{A}+\angle \mathrm{C}=\pi\) \(=\angle \mathrm{B}+\angle \mathrm{C}\) (opposite angle are supplementary angles)

(b) Area \(=\sqrt{(s-a)(s-b)(s-c)(s-d)}\), where \(2 s=a+b+c+d\)

(c) \(\cos B=\dfrac{a^{2}+b^{2}-c^{2}-d^{2}}{2(a b+c d)}\) & similarly other angles.

(d) Ptolemy's theorem : If \(A B C D\) is cyclic quadrilateral, then \(\mathrm{AC} \cdot \mathrm{BD}=\mathrm{AB} \cdot \mathrm{CD}+\mathrm{BC} \cdot \mathrm{AD}\)




17. SOLUTION OF TRIANGLE :

Case-I : Three sides are given then to find out three angles use
\(\cos A=\dfrac{b^{2}+c^{2}-a^{2}}{2 b c}, \cos B=\dfrac{c^{2}+a^{2}-b^{2}}{2 a c} \) & \(\cos C=\dfrac{a^{2}+b^{2}-c^{2}}{2 a b}\)

Case-II : Two sides & included angle are given:

Let sides \(a, b \) & angle \(C\) are given then use \(\tan \dfrac{A-B}{2}=\dfrac{a-b}{a+b} \cot \dfrac{C}{2}\) and find value of \(A-B\).....(i)

& \( \dfrac{A+B}{2}=90^{\circ}-\dfrac{C}{2}\)....(ii) \(\quad c=\dfrac{a \sin C}{\sin A}\).....(iii)

Case-III :

SOLUTION OF TRIANGLE

Two sides \(\mathrm{a}, \mathrm{b} \) \(\&\) angle \(\mathrm{A}\) opposite to one of them is given

(a) If \(\mathrm{a}<\mathrm{b} \sin \mathrm{A} \quad\) No triangle exist
(b) If \(a=b \sin A \) & \(A\) is acute, then one triangle exist which is right angled.
(c) \(\mathrm{a}>\mathrm{bsin} \mathrm{A}, \mathrm{a}<\mathrm{b} \) & \(\mathrm{~A}\) is acute, then two triangles exist
(d) \(\mathrm{a}>\mathrm{bsin} \mathrm{A}, \mathrm{a}>\mathrm{b} \) & \(\mathrm{~A}\) is acute, then one triangle exist
(e) \(\mathrm{a}>\mathrm{bsin} \mathrm{A} \)\(\mathrm{~A}\) is obtuse, then there is one triangle if \(\mathrm{a}>\mathrm{b}\) & no triangle if \(\mathrm{a}<\mathrm{b}\).

Note : Case-III can be analysed algebraically using Cosine rule as \(\cos A=\dfrac{b^{2}+c^{2}-a^{2}}{2 b c}\), which is quadratic in \(c\).




18. ANGLES OF ELEVATION AND DEPRESSION 

Let OP be a horizontal line in the vertical plane in which an object \(\mathrm{R}\) is given and let OR be joined.

ANGLES OF ELEVATION AND DEPRESSION

In Fig. (a), where the object \(\mathrm{R}\) is above the horizontal line \(\mathrm{OP}\), the angle POR is called the angle of elevation of the object \(\mathrm{R}\) as seen from the point O. In Fig. (b) where the object \(\mathrm{R}\) is below the horizontal line OP, the angle POR is called the angle of depression of the object \(\mathrm{R}\) as seen from the point \(\mathrm{O}\).



Comments

Popular posts from this blog

Determinant - Notes, Concept and All Important Formula

DETERMINANT 1. MINORS : The minor of a given element of determinant is the determinant of the elements which remain after deleting the row & the column in which the given element stands. For example, the minor of \(a _{1}\) in \(\left|\begin{array}{lll} a _{1} & b _{1} & c _{1} \\ a _{2} & b _{2} & c _{2} \\ a _{3} & b _{3} & c _{3}\end{array}\right|\) is \(\left|\begin{array}{ll} b _{2} & c _{2} \\ b _{3} & c _{3}\end{array}\right| \&\) the minor of \(b_{2}\) is \(\quad\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{3} & c_{3}\end{array}\right|\) . Hence a determinant of order three will have " 9 minors". 2. COFACTORS : If \(M _{ ij }\) represents the minor of the element belonging to \(i ^{\text {th }}\) row and \(j ^{\text {th }}\) column then the cofactor of that element : \(C_{i j}=(-1)^{i+j} \cdot M_{i j}\) Important Note : Consider \(\Delta=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} ...

Circle- Notes, Concept and All Important Formula

CIRCLE 1. DEFINITION : A circle is the locus of a point which moves in a plane in such a way that its distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is called the radius of the circle. All Chapter Notes, Concept and Important Formula 2. STANDARD EQUATIONS OF THE CIRCLE : (a) Central Form: If \((\mathrm{h}, \mathrm{k})\) is the centre and \(\mathrm{r}\) is the radius of the circle then its equation is \((\mathbf{x}-\mathbf{h})^{2}+(\mathbf{y}-\mathbf{k})^{2}=\mathbf{r}^{2}\) (b) General equation of circle : \(\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{2 g x}+\mathbf{2 f y}+\mathbf{c}=\mathbf{0}\) , where \(g, \mathrm{f}, c\) are constants and centre is \((-g,-f)\) i.e. \(\left(-\frac{\text { coefficient of } \mathrm{x}}{2},-\frac{\text { coefficient of } \mathrm{y}}{2}\right)\) and radius \(r=\sqrt{g^{2}+f^{2}-c}\) Note : The general quadratic equation in \(\mathrm{x}\) and \(\mathrm{y}\) , \(a x^{2}+b y^{2}+2 ...

Difference and relation between Differentiation and Integration

Relation between Differentiation and Integration Table Of Contents Look at the information given below. \[\mathbf{ y=f(x)}\] \[ \mathbf{ f'(x)\rightarrow \text{Derivatives of f(x)}}\] \[ \mathbf{\displaystyle \int_a^b f’(x) = ?}\] Can you tell me the value of above integral? Yes, it will be equal to f(b)-f(a) . We have already known this result. It tells us that integration is just the reverse of differentiation, integral of the derivative of the function f(x) is just equal to the difference in the function f(x) evaluated at the limits of integration. Indefinite integration- Notes and Formula Part 1 Now with this topic, we will understand how to apply this result to find the integral of a function.  Consider this function \(\mathbf{g(x)=x^2}\) Let's find the integral of this function from a to b i.e \(\mathbf{\displaystyle \int_a^b g(x) \, dx}\) .  Can you think how we can apply this result to find ...