Skip to main content

Inverse Trigonometric function - Notes, Concept and All Important Formula

INVERSE TRIGONOMETRIC FUNCTION

1. DOMAIN, RANGE & GRAPH OFINVERSE TRIGONOMETRIC

FUNCTIONS :

(a)

Graph of arc sin(x) or graph of sin^(-1)x

f1:[1,1][π/2,π/2]f1:[1,1][π/2,π/2],

f1(x)=sin1(x)

(b)

Graph of arc cos(x) or graph of cos^(-1)x

f1:[1,1][0,π],

f1(x)=cos1x

(c)

Graph of arc tan(x) or graph of tan^(-1)x

f1:R(π/2,π/2),

f1(x)=tan1x

(d)

Graph of arc cot(x) or graph of cot^(-1)x

f1:R(0,π)

f1(x)=cot1x

(e)

Graph of arc sec(x) or graph of sec^(-1)x

f1:(,1][1,)[0,π/2)(π/2,π],

f1(x)=sec1x

(f)

Graph of arc cosec(x) or graph of cosec^(-1)x

f1:(,1][1,)[π/2,0)(0,π/2]

f1(x)=cosec1x




2. PROPERTIES OF INVERSE CIRCULAR FUNCTIONS:

Property-1 :

(i) y=sin(sin1x)=x,x[1,1],y[1,1],y is aperiodic

(ii) y=cos(cos1x)=x,x[1,1],y[1,1],y is aperiodic

(iii) y=tan(tan1x)=x,xR,yR,y is aperiodic

(iv) y=cot(cot1x)=x,xR,yR,y is aperiodic

(v) y=cosec(cosec1x)=x,|x|1,|y|1,y is aperiodic

(vi) y=sec(sec1x)=x,|x|1;|y|1,y is aperiodic

Property 2 :

(i) y=sin1(sinx),xR,y[π2,π2]. Periodic with period 2π.

sin1(sinx)={πx,3π2xπ2x,π2xπ2πx,π2x3π2x2π,3π2x5π23πx,5π2x7π2x4π,7π2x9π2

Graph of arc sin(sin x)

(ii) y=cos1(cosx),xR,y[0,π], periodic with period 2π

cos1(cosx)={x,πx0x,0xπ2πx,πx2πx2π,2πx3π4πx,3πx4π

Graph of arc cos(cos x)

(iii) y=tan1(tanx)  xR{(2n1)π2,nI};y(π2,π2), periodic with period π

tan1(tanx)={x+π,3π2<x<π2x,π2<x<π2xπ,π2<x<3π2x2π,3π2<x<5π2x3π,5π2<x<7π2

Graph of arc tan(tan x)

(iv) y=cot1(cotx),xR{nπ},y(0,π), periodic with period π

Graph of arc cot(cot x)

(v) y=cosec1(cosecx), xR{nπ,nI} y[π2,0)(0,π2], y is periodic with period 2π.

Graph of arc cosec(cosec x)

(vi) y=sec1(secx),y is periodic with period 2π

xR{(2n1)π2nI},y[0,π2)(π2,π]

Graph of arc sec(sec x)

Property 3 :

(i) cosec1x=sin11x;x1 or x1

(ii) sec1x=cos11x;x1 or x1

(iii) cot1x=tan11x;x>0

=π+tan11x;x<0

Property 4:

(i) sin1(x)=sin1x,1x1

(ii) tan1(x)=tan1x,xR

(iii) cos1(x)=πcos1x,1x1

(iv) cot1(x)=πcot1x,xR

(v) sec1(x)=πsec1x,x1 or x1

(vi) cosec1(x)=cosec1x,x1 or x1

Property 5 :

(i) sin1x+cos1x=π2,1x1

(ii) tan1x+cot1x=π2,xR

(iii) cosec1x+sec1x=π2,|x|1

Property 6:

(i) tan1x+tan1y={tan1x+y1xy, where x>0,y>0&xy<1π+tan1x+y1xy, where x>0,y>0&xy>1π2, where x>0,y>0&xy=1

(ii) tan1xtan1y=tan1xy1+xy, where x>0, y>0

(iii) sin1x+sin1y=sin1[x1y2+y1x2]
where x>0,y>0 & (x2+y2)<1

Note that : x2+y2<10<sin1x+sin1y<π2

(iv) sin1x+sin1y=πsin1[x1y2+y1x2],
where x>0,y>0 & x2+y2>1

Note that : x2+y2>1π2<sin1x+sin1y<π

(v) sin1xsin1y=sin1[x1y2y1x2] where x>0,y>0

(vi) cos1x+cos1y=cos1[xy1x21y2], where x>0,y>0

(vii) cos1xcos1y={cos1(xy+1x21y2);x<y,x,y>0cos1(xy+1x21y2);x>y,x,y>0

(viii) tan1x+tan1y+tan1z=tan1[x+y+zxyz1xyyzzx]
if x>0,y>0,z>0 & xy+yz+zx<1

Note : In the above results x & y are taken positive. In case if these are given as negative, we first apply P4 and then use above results.




3. SIMPLIFIED INVERSE TRIGONOMETRIC FUNCTIONS :

(a) 

Graph of arc sin(2x/(1+x²))

y=f(x)=sin1(2x1+x2)

=[2tan1x if x1π2tan1x if x>1(π+2tan1x) if x<1

(b) 

Graph of arc cos((1-x²)/(1+x²))

y=f(x)=cos1(1x21+x2)

=[2tan1x if x02tan1x if x<0

(c) 

Graph of arc tan(2x/(1-x²))

y=f(x)=tan12x1x2

=[2tan1x if |x|<1π+2tan1x if x<1(π2tan1x) if x>1

(d)

Graph of arc sin(3x-4x³)

y=f(x)=sin1(3x4x3)

=[(π+3sin1x) if 1x123sin1x if 12x12π3sin1x if 12x1

(e)
Graph of arc cos(4x³-3x)

 y=f(x)=cos1(4x33x)  

={3cos1x2π if 1x122π3cos1x if 12x123cos1x if 12x1

(f) 

Graph of arc sin(2x√(1-x²))

sin1(2x1x2)

={(π+2sin1x)1x122sin1x12x12π2sin1x12x1

(g)

graph of arc cos(2x²-1)

cos1(2x21)

={2cos1x0x12π2cos1x1x0



Comments

Popular posts from this blog

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of x such that F(x) =f(x) then the function F is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of f(x) w.r.t. x and is written symbolically as f(x)dx =F(x)+cddx{F(x)+c} =f(x) , where c is called the constant of integration. Note : If f(x)dx =F(x)+c , then f(ax+b)dx =F(ax+b)a+c,a0 All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) (ax+b)ndx =(ax+b)n+1a(n+1)+c;n1 (ii) dxax+b =1aln|ax+b|+c (iii) eax+bdx \(=\dfrac{1}{...

Logarithm - Notes, Concept and All Important Formula

LOGARITHM LOGARITHM OF A NUMBER : The logarithm of the number N to the base ' a ' is the exponent indicating the power to which the base 'a' must be raised to obtain the number N . This number is designated as logaN . (a) loga N=x , read as log of N to the base aax=N . If a=10 then we write logN or log10 N and if a=e we write lnN or loge N (Natural log) (b) Necessary conditions : N>0;a>0;a1 (c) loga1=0 (d) logaa=1 (e) log1/aa=1 (f) loga(x.y)=logax+logay;x,y>0 (g) \(\log _{a}\left(\dfrac{\mathrm{x}}{y}\right)=\log _{\mathrm{a}} \mathrm{x}-\log _{\mathrm{a}} \mathrm{y} ; \,\, \mathrm{...

Ellipse - Notes, Concept and All Important Formula

ELLIPSE 1. STANDARD EQUATION & DEFINITION : Standard equation of an ellipse referred to its principal axis along the co-ordinate axis is x2a2+y2b2=1 . where a>b & b2=a2(1e2) a2b2=a2e2. where e= eccentricity (0<e<1) . FOCI:S(ae,0) &  S(ae,0). (a) Equation of directrices : x=ae & x=ae .  (b) Vertices: A(a,0) &  A(a,0) (c) Major axis : The line segment AA in which the foci S & S lie is of length 2a & is called the major axis (a>b) of the ellipse. Point of intersection of major axis with dir...