Skip to main content

Inverse Trigonometric function - Notes, Concept and All Important Formula

INVERSE TRIGONOMETRIC FUNCTION

1. DOMAIN, RANGE & GRAPH OFINVERSE TRIGONOMETRIC

FUNCTIONS :

(a)

Graph of arc sin(x) or graph of sin^(-1)x

f1:[1,1][π/2,π/2]f1:[1,1][π/2,π/2],

f1(x)=sin1(x)f1(x)=sin1(x)

(b)

Graph of arc cos(x) or graph of cos^(-1)x

f1:[1,1][0,π]f1:[1,1][0,π],

f1(x)=cos1xf1(x)=cos1x

(c)

Graph of arc tan(x) or graph of tan^(-1)x

f1:R(π/2,π/2)f1:R(π/2,π/2),

f1(x)=tan1xf1(x)=tan1x

(d)

Graph of arc cot(x) or graph of cot^(-1)x

f1:R(0,π)f1:R(0,π)

f1(x)=cot1xf1(x)=cot1x

(e)

Graph of arc sec(x) or graph of sec^(-1)x

f1:(,1][1,)f1:(,1][1,)[0,π/2)(π/2,π][0,π/2)(π/2,π],

f1(x)=sec1x

(f)

Graph of arc cosec(x) or graph of cosec^(-1)x

f1:(,1][1,)[π/2,0)(0,π/2]

f1(x)=cosec1x




2. PROPERTIES OF INVERSE CIRCULAR FUNCTIONS:

Property-1 :

(i) y=sin(sin1x)=x,x[1,1],y[1,1],y is aperiodic

(ii) y=cos(cos1x)=x,x[1,1],y[1,1],y is aperiodic

(iii) y=tan(tan1x)=x,xR,yR,y is aperiodic

(iv) y=cot(cot1x)=x,xR,yR,y is aperiodic

(v) y=cosec(cosec1x)=x,|x|1,|y|1,y is aperiodic

(vi) y=sec(sec1x)=x,|x|1;|y|1,y is aperiodic

Property 2 :

(i) y=sin1(sinx),xR,y[π2,π2]. Periodic with period 2π.

sin1(sinx)={πx,3π2xπ2x,π2xπ2πx,π2x3π2x2π,3π2x5π23πx,5π2x7π2x4π,7π2x9π2

Graph of arc sin(sin x)

(ii) y=cos1(cosx),xR,y[0,π], periodic with period 2π

cos1(cosx)={x,πx0x,0xπ2πx,πx2πx2π,2πx3π4πx,3πx4π

Graph of arc cos(cos x)

(iii) y=tan1(tanx)  xR{(2n1)π2,nI};y(π2,π2), periodic with period π

tan1(tanx)={x+π,3π2<x<π2x,π2<x<π2xπ,π2<x<3π2x2π,3π2<x<5π2x3π,5π2<x<7π2

Graph of arc tan(tan x)

(iv) y=cot1(cotx),xR{nπ},y(0,π), periodic with period π

Graph of arc cot(cot x)

(v) y=cosec1(cosecx), xR{nπ,nI} y[π2,0)(0,π2], y is periodic with period 2π.

Graph of arc cosec(cosec x)

(vi) y=sec1(secx),y is periodic with period 2π

xR{(2n1)π2nI},y[0,π2)(π2,π]

Graph of arc sec(sec x)

Property 3 :

(i) cosec1x=sin11x;x1 or x1

(ii) sec1x=cos11x;x1 or x1

(iii) cot1x=tan11x;x>0

=π+tan11x;x<0

Property 4:

(i) sin1(x)=sin1x,1x1

(ii) tan1(x)=tan1x,xR

(iii) cos1(x)=πcos1x,1x1

(iv) cot1(x)=πcot1x,xR

(v) sec1(x)=πsec1x,x1 or x1

(vi) cosec1(x)=cosec1x,x1 or x1

Property 5 :

(i) sin1x+cos1x=π2,1x1

(ii) tan1x+cot1x=π2,xR

(iii) cosec1x+sec1x=π2,|x|1

Property 6:

(i) tan1x+tan1y={tan1x+y1xy, where x>0,y>0&xy<1π+tan1x+y1xy, where x>0,y>0&xy>1π2, where x>0,y>0&xy=1

(ii) tan1xtan1y=tan1xy1+xy, where x>0, y>0

(iii) sin1x+sin1y=sin1[x1y2+y1x2]
where x>0,y>0 & (x2+y2)<1

Note that : x2+y2<10<sin1x+sin1y<π2

(iv) sin1x+sin1y=πsin1[x1y2+y1x2],
where x>0,y>0 & x2+y2>1

Note that : x2+y2>1π2<sin1x+sin1y<π

(v) sin1xsin1y=sin1[x1y2y1x2] where x>0,y>0

(vi) cos1x+cos1y=cos1[xy1x21y2], where x>0,y>0

(vii) cos1xcos1y={cos1(xy+1x21y2);x<y,x,y>0cos1(xy+1x21y2);x>y,x,y>0

(viii) tan1x+tan1y+tan1z=tan1[x+y+zxyz1xyyzzx]
if x>0,y>0,z>0 & xy+yz+zx<1

Note : In the above results x & y are taken positive. In case if these are given as negative, we first apply P4 and then use above results.




3. SIMPLIFIED INVERSE TRIGONOMETRIC FUNCTIONS :

(a) 

Graph of arc sin(2x/(1+x²))

y=f(x)=sin1(2x1+x2)

=[2tan1x if x1π2tan1x if x>1(π+2tan1x) if x<1

(b) 

Graph of arc cos((1-x²)/(1+x²))

y=f(x)=cos1(1x21+x2)

=[2tan1x if x02tan1x if x<0

(c) 

Graph of arc tan(2x/(1-x²))

y=f(x)=tan12x1x2

=[2tan1x if |x|<1π+2tan1x if x<1(π2tan1x) if x>1

(d)

Graph of arc sin(3x-4x³)

y=f(x)=sin1(3x4x3)

=[(π+3sin1x) if 1x123sin1x if 12x12π3sin1x if 12x1

(e)
Graph of arc cos(4x³-3x)

 y=f(x)=cos1(4x33x)  

={3cos1x2π if 1x122π3cos1x if 12x123cos1x if 12x1

(f) 

Graph of arc sin(2x√(1-x²))

sin1(2x1x2)

={(π+2sin1x)1x122sin1x12x12π2sin1x12x1

(g)

graph of arc cos(2x²-1)

cos1(2x21)

={2cos1x0x12π2cos1x1x0



Comments

Popular posts from this blog

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of x such that F(x) =f(x) then the function F is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of f(x) w.r.t. x and is written symbolically as f(x)dx =F(x)+cddx{F(x)+c} =f(x) , where c is called the constant of integration. Note : If f(x)dx =F(x)+c , then f(ax+b)dx =F(ax+b)a+c,a0 All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) (ax+b)ndx =(ax+b)n+1a(n+1)+c;n1 (ii) dxax+b =1aln|ax+b|+c (iii) eax+bdx \(=\dfrac{1}{...

Logarithm - Notes, Concept and All Important Formula

LOGARITHM LOGARITHM OF A NUMBER : The logarithm of the number N to the base ' a ' is the exponent indicating the power to which the base 'a' must be raised to obtain the number N . This number is designated as logaN . (a) loga N=x , read as log of N to the base aax=N . If a=10 then we write logN or log10 N and if a=e we write lnN or loge N (Natural log) (b) Necessary conditions : N>0;a>0;a1 (c) loga1=0 (d) logaa=1 (e) log1/aa=1 (f) loga(x.y)=logax+logay;x,y>0 (g) \(\log _{a}\left(\dfrac{\mathrm{x}}{y}\right)=\log _{\mathrm{a}} \mathrm{x}-\log _{\mathrm{a}} \mathrm{y} ; \,\, \mathrm{...

Vectors - Notes, Concept and All Important Formula

VECTORS 1. Vectors Physical quantities are broadly divided in two categories viz (a) Vector Quantities & (b) Scalar quantities. (a) Vector quantities: Any quantity, such as velocity, momentum, or force, that has both magnitude and direction and for which vector addition is defined and meaningful; is treated as vector quantities. (b) Scalar quantities: A quantity, such as mass, length, time, density or energy, that has size or magnitude but does not involve the concept of direction is called scalar quantity. All Chapter Notes, Concept and Important Formula 2. REPRESENTATION : Vectors are represented by directed straight line segment magnitude of a=|a|= length PQ direction of a=P to Q 3. Types of Vectors (a) ZERO VECTOR OR NULL VECTOR : A vector of zero magnitude i.e. which has the same initial & terminal point is called a ZERO VECTOR. It is denoted by  O . (b) UNIT VECTOR : A v...