Skip to main content

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION

If  f & F are function of xx such that F(x)=f(x) then the function F is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of f(x) w.r.t. x and is written symbolically as f(x)dx=F(x)+cddx{F(x)+c}=f(x), where c is called the constant of integration.

Note : If f(x)dx=F(x)+c, then f(ax+b)dx=F(ax+b)a+c,a0




1. STANDARD RESULTS :

(i) (ax+b)ndx=(ax+b)n+1a(n+1)+c;n1

(ii) dxax+b=1aln|ax+b|+c

(iii) eax+bdx=1aeax+b+c

(iv) apx+qdx=1papx+qlna(a>0)+c

(v) sin(ax+b)dx=1acos(ax+b)+c

(vi) cos(ax+b)dx=1asin(ax+b)+c

(vii) tan(ax+b)dx=1aln|sec(ax+b)|+c

(viii) cot(ax+b)dx=1aln|sin(ax+b)|+c

(ix) sec2(ax+b)dx=1atan(ax+b)+c

(x) cosec2(ax+b)dx=1acot(ax+b)+c

(xi) cosec(ax+b)cot(ax+b)dx=1acosec(ax+b)+c

(xii) sec(ax+b)tan(ax+b)dx=1asec(ax+b)+c

(xiii) secxdx=ln|secx+tanx|+c

OR secxdx=lntan|π4+x2|+c

(xiv) cosecxdx=ln|cosecxcotx|+c

OR cosecxdx=ln|tanx2|+c OR ln(cosecx+cotx)+c

(xv) dxa2x2=sin1xa+c

(xvi) dxa2+x2=1atan1xa+c

(xvii) dxxx2a2=1asec1xa+c

(xviii) dxx2+a2=ln[x+x2+a2]+c

(xix) dxx2a2=ln[x+x2a2]+c

(xx) dxa2x2=12aln|a+xax|+c

(xxi) dxx2a2=12aln|xax+a|+c

(xxii) a2x2dx=x2a2x2+a22sin1xa+c

(xxiii) x2+a2dx=x2x2+a2+a22ln(x+x2+a2)+c

(xxiv) x2a2dx=x2x2a2a22ln(x+x2a2)+c

(xxv) eaxsinbxdx=eaxa2+b2(asinbxbcosbx)+c

(xxvi) eaxcosbxdx=eaxa2+b2(acosbx+bsinbx)+c




2. TECHNIQUES OF INTEGRATION :

(a) Substitution or change of independent variable:

Integral I=f(x)dx is changed to f(ϕ(t))ϕ(t)dt, by a suitable substitution x=ϕ (t) provided the later integral is easier to integrate.

Some standard substitution:

(1) [f(x)]nf(x)dxORf(x)[f(x)]ndx put f(x)=t & proceed.

(2) dxax2+bx+c, dxax2+bx+c, ax2+bx+cdx

Express ax2+bx+c in the form of perfect square & then apply the standard results.

(3) px+qax2+bx+cdx, px+qax2+bx+cdx

Express px+q=A (differential coefficient of quadratic term of denominator ) +B.

(4) ex[f(x)+f(x)]dx=exf(x)+c

(5) [f(x)+xf(x)]dx=xf(x)+c

(6) dxx(xn+1)nN, take xn common & put 1+xn=t.

(7) dxx2(xn+1)(n1)/nnN, take xn common & put 1+xn=tn

(8) dxxn(1+xn)1/n, take xn common and put 1+xn=t.

(9) dxa+bsin2x OR dxa+bcos2x

OR dxasin2x+bsinxcosx+ccos2x

Multiply Nr & Dr by sec2x & put tanx=t

(10) dxa+bsinx OR dxa+bcosx OR dxa+bsinx+ccosx

Convert sines & cosines into their respective tangents of half the angles, put tan x2=t

(11) acosx+bsinx+cpcosx+qsinx+rdx

Express Numerator (Nr)(Dr)+mddx(Dr)+n & proceed.

(12) x2+1x4+Kx2+1dx OR x21x4+Kx2+1dx,

where K is any constant. Divide Nr & Dr by x2, then put x1x=t OR x+1x=t respectively & proceed

(13) dx(ax+b)px+q & dx(ax2+bx+c)px+q; put px+q=t2

(14) dx(ax+b)px2+qx+r, put ax+b=1t;

dx(ax2+bx+c)px2+qx+r, put x=1t

(15) xαβxdx OR (xα)(βx); put x=αcos2θ+βsin2θ

xαxβdx OR (xα)(xβ); put x=αsec2θβtan2θ

dx(xα)(xβ); put xα=t2 or xβ=t2

(16) To integrate sinmxcosnxdx.

(i) If m is odd positive integer put cosx=t.

(ii) If n is odd positive integer put sinx=t

(iii) If m+n is negative even integer then put tanx=t.

(iv) If m and n both even positive integer then use

sin2x=1cos2x2,cos2x=1+cos2x2




(b) Integration by parts:

u.vdx=uvdx[dudxvdx]dx where u & v are differentiable functions.

Note : While using integration by parts, choose u & v such that

(i) vdx   &   (ii) [dudxvdx]dx is simple to integrate.

This is generally obtained, by keeping the order of u & v as per the order of the letters in ILATE, where; I-Inverse function, L-Logarithmic function, A-Algebraic function, T-Trigonometric function & E-Exponential function.




(c) Partial fraction :

Rational function is defined as the ratio of two polynomials in the form P(x)Q(x), where P(x) and Q(x) are polynomials in x and Q(x)0. If the degree of P(x) is less than the degree of Q(x), then the rational function is called proper, otherwise, it is called improper. The improper rational function can be reduced to the proper rational functions by long division process. Thus, if P(x)Q(x) is improper, then P(x)Q(x)=T(x)+P1(x)Q(x), where T(x) is a polynomial in x and P1(x)Q(x) is proper rational function. It is always possible to write the integrand as a sum of simpler rational functions by a method called partial fraction decomposition. After this, the integration can be carried out easily using the already known methods.

 S. No.  Form of the  rational function  Form of the  partial fraction  1. px2+qx+r(xa)(xb)(xc)Axa+Bxb+Cxc 2. px2+qx+r(xa)2(xb)Axa+B(xa)2+Cxb 3. px2+qx+r(xa)(x2+bx+c)Axa+Bx+Cx2+bx+c

where x2+bx+c cannot be factorised further

Note: 

In competitive exams, partial fraction are generally found by inspection by noting following fact :

1(xα)(xβ)=1(αβ)(1xα1xβ)

It can be applied to the case when x2 or any other function is there in all places of x

Example : 

(1) 1(x2+1)(x2+3)=12(1t+11t+3) take x2=t 

(2) 1x4(x2+1)=1x2(1x21x2+1)=1x4(1x21x2+1) 

(3) 1x3(x2+1)=1x(1x21x2+1)=1x31x(x2+1)



Comments

Popular posts from this blog

Logarithm - Notes, Concept and All Important Formula

LOGARITHM LOGARITHM OF A NUMBER : The logarithm of the number N to the base ' a ' is the exponent indicating the power to which the base 'a' must be raised to obtain the number N . This number is designated as logaN . (a) loga N=x , read as log of N to the base aax=N . If a=10 then we write logN or log10 N and if a=e we write lnN or loge N (Natural log) (b) Necessary conditions : N>0;a>0;a1 (c) loga1=0 (d) logaa=1 (e) log1/aa=1 (f) loga(x.y)=logax+logay;x,y>0 (g) \(\log _{a}\left(\dfrac{\mathrm{x}}{y}\right)=\log _{\mathrm{a}} \mathrm{x}-\log _{\mathrm{a}} \mathrm{y} ; \,\, \mathrm{...

Ellipse - Notes, Concept and All Important Formula

ELLIPSE 1. STANDARD EQUATION & DEFINITION : Standard equation of an ellipse referred to its principal axis along the co-ordinate axis is x2a2+y2b2=1 . where a>b & b2=a2(1e2) a2b2=a2e2. where e= eccentricity (0<e<1) . FOCI:S(ae,0) &  S(ae,0). (a) Equation of directrices : x=ae & x=ae .  (b) Vertices: A(a,0) &  A(a,0) (c) Major axis : The line segment AA in which the foci S & S lie is of length 2a & is called the major axis (a>b) of the ellipse. Point of intersection of major axis with dir...