LOGARITHM
LOGARITHM OF A NUMBER :
The logarithm of the number N to the base ' a ' is the exponent indicating the power to which the base 'a' must be raised to obtain the number N. This number is designated as logaN.
(a) loga N=x, read as log of N to the base a⇔ax=N.
If a=10 then we write logN or log10 N and if a=e we write lnN or loge N (Natural log)
If a=10 then we write logN or log10 N and if a=e we write lnN or loge N (Natural log)
(b) Necessary conditions : N>0;a>0;a≠1
(c) loga1=0
(d) logaa=1
(e) log1/aa=−1
(f) loga(x.y)=logax+logay;x,y>0
(g) loga(xy)=logax−logay;x,y>0
(h) logaxp=plogax;x>0
(i) loga9x=1qlogax;x>0
(j) logax=1logxa;x>0,x≠1
(k) logax=logbx/logba;x>0, a,b>0, b≠1, a≠1
(l) logab⋅logbc.logc d=loga d;a,b,c,d>0,≠1
(m) alogax=x;a>0,a≠1
(n) alogbc=clogba;a,b,c>0;b≠1
(o) logax<logay⇔[x<y if a>1x>y if 0<a<1
(p) logax=logay⇒x=y;x,y>0;a>0,a≠1
(q) elnax=ax
(r) log102=0.3010;log103=0.4771;ln2=0.693,ln10=2.303
(s) If a>1 then logax<p⇒0<x<ap
(t) If a>1 then logax>p⇒x>ap
(u) If 0<a<1 then logax<p⇒x>ap
(v) If 0<a<1 then logax>p⇒0<x<ap
(c) loga1=0
(d) logaa=1
(e) log1/aa=−1
(f) loga(x.y)=logax+logay;x,y>0
(g) loga(xy)=logax−logay;x,y>0
(h) logaxp=plogax;x>0
(i) loga9x=1qlogax;x>0
(j) logax=1logxa;x>0,x≠1
(k) logax=logbx/logba;x>0, a,b>0, b≠1, a≠1
(l) logab⋅logbc.logc d=loga d;a,b,c,d>0,≠1
(m) alogax=x;a>0,a≠1
(n) alogbc=clogba;a,b,c>0;b≠1
(o) logax<logay⇔[x<y if a>1x>y if 0<a<1
(p) logax=logay⇒x=y;x,y>0;a>0,a≠1
(q) elnax=ax
(r) log102=0.3010;log103=0.4771;ln2=0.693,ln10=2.303
(s) If a>1 then logax<p⇒0<x<ap
(t) If a>1 then logax>p⇒x>ap
(u) If 0<a<1 then logax<p⇒x>ap
(v) If 0<a<1 then logax>p⇒0<x<ap
Comments
Post a Comment