Skip to main content

Logarithm - Notes, Concept and All Important Formula

LOGARITHM

LOGARITHM OF A NUMBER :

The logarithm of the number \(\mathrm{N}\) to the base ' \(\mathrm{a}\) ' is the exponent indicating the power to which the base 'a' must be raised to obtain the number \(\mathrm{N}\). This number is designated as \(\log _{\mathrm{a}} \mathrm{N}\).

(a) \(\log _{a} \mathrm{~N}=\mathrm{x}\), read as \(\log\) of \(\mathrm{N}\) to the base \(\mathrm{a} \Leftrightarrow \mathrm{a}^{\mathrm{x}}=\mathrm{N}\).
If \(a=10\) then we write \(\log N\) or \(\log _{10} \mathrm{~N}\) and if \(\mathrm{a}=e\) we write \(\ln N\) or \(\log _{e} \mathrm{~N}\) (Natural log)
(b) Necessary conditions : \(\mathrm{N}> \,\,0 ; \,\, \mathrm{a}> \,\,0 ; \,\, \mathrm{a} \neq 1\)
(c) \(\log _{a} 1=0\)
(d) \(\log _{a} a=1\)
(e) \(\log _{1 / a} a=-1\)
(f) \(\log _{a}(x . y)=\log _{a} x+\log _{a} y ; \,\, x, y> \,\,0\)
(g) \(\log _{a}\left(\dfrac{\mathrm{x}}{y}\right)=\log _{\mathrm{a}} \mathrm{x}-\log _{\mathrm{a}} \mathrm{y} ; \,\, \mathrm{x}, \mathrm{y}> \,\,0\)
(h) \(\log _{a} x^{p}=p \log _{a} x ; \,\, x> \,\,0\)
(i) \(\log _{a^{9}} x=\dfrac{1}{q} \log _{a} x ; \,\, x> \,\,0\)
(j) \(\log _{a} x=\dfrac{1}{\log _{x} a} ; \,\, x> \,\,0, x \neq 1\)
(k) \(\log _{a} x=\log _{b} x / \log _{b} a ; \,\, x> 0,\) \( a, b> 0,\) \( b \neq 1,\) \( a \neq 1\)
(l) \(\log _{a} b \cdot \log _{b} c . \log _{c} \mathrm{~d}=\log _{a} \mathrm{~d} ; \,\, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}> \,\,0, \neq 1\)
(m) \(a^{\log _{a} x}=x ; \,\, a> \,\,0, a \neq 1\)
(n) \(a^{\log _{b} c}=c^{\log _{b} a} ; \,\, a, b, c> \,\,0 ; \,\, b \neq 1\)
(o) \(\log _{a} x< \,\,\log _{a} y \Leftrightarrow\left[\begin{array}{ll}x< \,\,y & \,\, \text { if } \quad a> \,\,1 \\ x> \,\,y & \,\, \text { if } \quad 0< \,\,a< \,\,1\end{array}\right.\)
(p) \(\log _{a} x=\log _{a} y \Rightarrow x=y ;\)\( \,\, x, y> 0 ; \,\, \)\(a> \,\,0, a \neq 1\)
(q) \(e^{\operatorname{lna}^{x}}=a^{x}\)
(r) \(\log _{10} 2=0.3010 ;\)\( \,\, \log _{10} 3=0.4771 ;\)\( \,\, \ln 2=0.693,\)\( \ln 10=2.303\)
(s) If \(a> \,\,1\) then \(\log _{a} x< \,\,p \Rightarrow 0< \,\,x< \,\,a^{p}\)
(t) If \(a> \,\,1\) then \(\log _{a} x> \,\,p \Rightarrow x> \,\,a^{p}\)
(u) If \(0< \,\,a< \,\,1\) then \(\log _{a} x< \,\,p \Rightarrow x> \,\,a^{p}\)
(v) If \(0< \,\,a< \,\,1\) then \(\log _{a} x> \,\,p \Rightarrow 0< \,\,x< \,\,a^{p}\)


Comments

Popular posts from this blog

Difference and relation between Differentiation and Integration

Relation between Differentiation and Integration Table Of Contents Look at the information given below. \[\mathbf{ y=f(x)}\] \[ \mathbf{ f'(x)\rightarrow \text{Derivatives of f(x)}}\] \[ \mathbf{\displaystyle \int_a^b f’(x) = ?}\] Can you tell me the value of above integral? Yes, it will be equal to f(b)-f(a) . We have already known this result. It tells us that integration is just the reverse of differentiation, integral of the derivative of the function f(x) is just equal to the difference in the function f(x) evaluated at the limits of integration. Indefinite integration- Notes and Formula Part 1 Now with this topic, we will understand how to apply this result to find the integral of a function.  Consider this function \(\mathbf{g(x)=x^2}\) Let's find the integral of this function from a to b i.e \(\mathbf{\displaystyle \int_a^b g(x) \, dx}\) .  Can you think how we can apply this result to find ...

Maxima and Minima Formula

In this topic we will learn important maxima and minima formula for JEE Mains and Advanced and also important for Class 12 board student. So lets explore important formula of maxima and minima .  MAXIMA-MINIMA Table Of Contents 1. INTRODUCTION : MAXIMA AND MINIMA: (a) Local Maxima /Relative maxima : A function f ( x ) is said to have a local maxima at x = a if f ( a ) ≥ f ( x ) ∀ x ∈ ( a − h , a + h ) ∩ D f(x) Where h is some positive real number. (b) Local Minima/Relative minima: A function f ( x ) is said to have a local minima at x = a if f ( a ) ≤ f ( x ) ∀ x ∈ ( a − h , a + h ) ∩ D f(x) Where h is some positive real number. (c) Absolute maxima (Global maxima): A function f has an absolute maxima (or global maxima) at c if f ( c ) ≥ f ( x ) for all x in D , where D is the domain of f . The number f ( c ) is called the maximum value of f on D . (d) Absolute minima (Global minima): A function f has an absolute minima at c if f ( c ) ≤ f ( x ) for all x in D and the numb...

Tangent & Normal - Notes, Concept and All Important Formula

TANGENT & NORMAL 1. TANGENT TO THE CURVE AT A POINT: The tangent to the curve at 'P' is the line through P whose slope is limit of the secant's slope as \(Q \rightarrow P\) from either side. All Chapter Notes, Concept and Important Formula 2. NORMAL TO THE CURVE AT A POINT: A line which is perpendicular to the tangent at the point of contact is called normal to the curve at that point. 3. THINGS TO REMEMBER : (a) The value of the derivative at \(\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) gives the slope of the tangent to the curve at P. Symbolically \(\left.\mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)=\dfrac{\mathrm{dy}}{\mathrm{dx}}\right]_{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)}=\) Slope of tangent at \(\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\mathrm{m}\) (say). (b) Equation of tangent at \(\left(x_{1}, y_{1}\right)\) is \(\left.y-y_{1}=\dfrac{d y}{d x}\right]_{\left(x_{1}, y_{1}\right)}\left(x-x_{1}\right)\) (c) Equation of...