Skip to main content

Limit - Notes, Concept and All Important Formula

LIMIT

1. DEFINITION :

Let \(\mathrm{f}(\mathrm{x})\) be defined on an open interval about 'a' except possibly at 'a' itself. If \(\mathrm{f}(\mathrm{x})\) gets arbitrarily close to \(\mathrm{L}\) (a finite number) for all \(\mathrm{x}\) sufficiently close to 'a' we say that \(\mathrm{f}(\mathrm{x})\) approaches the limit \(\mathrm{L}\) as \(\mathrm{x}\) approaches 'a' and we write \(\displaystyle \lim_{x \rightarrow a} f(x)=L\) and say "the limit of \(f(x)\), as \(\mathrm{x}\) approaches a, equals \(\mathrm{L}\) ".




2. LEFT HAND LIMIT & RIGHT HAND LIMIT OF A FUNCTION:

Left hand limit \((\mathrm{LHL})=\displaystyle \lim_{\mathrm{x} \rightarrow \mathrm{a}^{-}} \mathrm{f}(\mathrm{x})=\displaystyle \lim_{\mathrm{h} \rightarrow 0} \mathrm{f}(\mathrm{a}-\mathrm{h}), \mathrm{h}>0\)

Right hand limit \((\mathrm{RHL})=\displaystyle \lim_{\mathrm{x} \rightarrow \mathrm{a}^{+}} \mathrm{f}(\mathrm{x})=\displaystyle \lim_{\mathrm{h} \rightarrow 0} \mathrm{f}(\mathrm{a}+\mathrm{h}), \mathrm{h}>0\)

Limit of a function \(\mathbf{f}(\mathbf{x})\) is said to exist as \(\mathbf{x} \rightarrow \mathbf{a}\) when \(\mathbf {\displaystyle \lim_{x \rightarrow a^{-}} f(x)=\displaystyle \lim_{x \rightarrow a^{+}} f(x)=}\) Finite and fixed quantity.

Important note :

In \(\mathbf{\displaystyle \lim_{\mathbf{x} \rightarrow \mathbf{a}} \mathbf{f}(\mathbf{x}), \mathbf{x} \rightarrow}\) a necessarily implies \(\mathbf{x} \neq \mathbf{a}\). That is while evaluating limit at \(\mathrm{x}=\mathrm{a}\), we are not concerned with the value of the function at \(x=a\). In fact the function may or may not be defined at \(x=a\)

Also it is necessary to note that if \(\mathrm{f}(\mathrm{x})\) is defined only on one side of  \(\mathbf{'x}=\mathbf{a'}\), one sided limits are good enough to establish the existence of limits, & if \(\mathrm{f}(\mathrm{x})\) is defined on either side of 'a' both sided limits are to be considered.




3. FUNDAMENTAL THEOREMS ON LIMITS :

Let \(\displaystyle \lim_{x \rightarrow a} f(x)=l \) & \( \displaystyle \lim _{x \rightarrow a} g(x)=m\). If \(l \) & \(m\) exists finitely then :

(a) Sum rule: \(\displaystyle \lim_{x \rightarrow a}[f(x)+g(x)]=l+m\)

(b) Difference rule : \(\displaystyle \lim_{x \rightarrow a}[f(x)-g(x)]=l-m\)

(c) Product rule : \(\displaystyle \lim_{x \rightarrow a} f(x) \cdot g(x)=l . m\)

(d) Quotient rule :\( \displaystyle \lim_{\mathrm{x} \rightarrow \mathrm{a}} \dfrac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}=\dfrac{l}{\mathrm{~m}}\), provided \(\mathrm{m} \neq 0\)

(e) Constant multiple rule :\( \displaystyle \lim_{x \rightarrow a} \operatorname{kf}(x)=k\displaystyle \lim_{x \rightarrow a} f(x) ;\) where \(k\) is constant.

(f) Power rule: \(\displaystyle \lim_{x \rightarrow a}[f(x)]^{g(x)}=l^{\mathrm{m}}\), provided \(l>0\)

(g) \(\displaystyle \lim_{x \rightarrow a} f[g(x)]=f\left(\displaystyle \lim_{x \rightarrow a} g(x)\right)=f(m) ;\) provided \(f(x)\) is continuous at \(x=m\)

For example : \( \displaystyle \lim_{x \rightarrow a} \ell n(f(x))=\ell n\left[\displaystyle\lim_{x \rightarrow a}f(x)\right] ;\) provided \(\ell n x\) is defined at \(\mathrm{x}=\displaystyle \lim_{\mathrm{t} \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{t})\).




4. INDETERMINATE FORMS :

\(\dfrac{0}{0}, \dfrac{\infty}{\infty}, \infty-\infty, 0 \times \infty, 1^{\infty}, 0^{0}, \infty^{0}\)

Note:
We cannot plot \(\infty\) on the paper. Infinity \((\infty)\) is a symbol & not a number. It does not obey the laws of elementary algebra.



5. GENERAL METHODS TO BE USED TO EVALUATE LIMITS:

(a) Factorization :

Important factors:
(i) \(x^{n}-a^{n}\)\(=(x-a)\left(x^{n-1}+a x^{n-2}+\ldots \ldots \right. \)\(\left.\ldots . .+a^{n-1}\right), n \in N\)
(ii) \(x^{n}+a^{n}\)\(=(x+a)\left(x^{n-1}-a x^{n-2}+\ldots \ldots\right.\)\(\left. \ldots . .+a^{n-1}\right), n\) is an odd natural number.

Note: \( \displaystyle \lim_{x \rightarrow a} \dfrac{x^{n}-a^{n}}{x-a}=n a^{n-1}\)

(b) Rationalization or double rationalization:

In this method we rationalise the factor containing the square root and simplify.

(c) Limit when \(x \rightarrow \infty\) :

(i) Divide by greatest power of \(\mathrm{x}\) in numerator and denominator.
(ii) Put \(x=1 / y\) and apply \(y \rightarrow 0\)

(d) Squeeze play theorem (Sandwich theorem):

If \(f(x) \leq g(x) \leq h(x) ; \,\, \forall \,\, x \)\(\displaystyle \lim_{x \rightarrow a} f(x)=\ell\)\(=\displaystyle \lim_{x \rightarrow a} h(x)\) then \(\displaystyle \lim_{x \rightarrow a} g(x)=\ell\)

Squeeze play theorem (Sandwich theorem):
For example : \(\displaystyle \lim_{x \rightarrow 0} x^{2} \sin \dfrac{1}{x}=0\), as illustrated by the graph given.

(e) Using substitution \(\displaystyle \lim_{x \rightarrow a} f(x)=\)\(\displaystyle \lim_{h \rightarrow 0} f(a-h)\) or \(\displaystyle \lim_{h \rightarrow 0} f(a+h)\) i.e. by substituting \(x\) by \(a-h\) or \(a+h\)




6. LIMIT OF TRIGONOMETRIC FUNCTIONS:

\(\displaystyle \lim_{x \rightarrow 0} \dfrac{\sin x}{x}=1\)\(=\displaystyle \lim_{x \rightarrow 0} \dfrac{\tan x}{x}\)\(=\displaystyle \lim_{x \rightarrow 0} \dfrac{\tan ^{-1} x}{x}\)\(=\displaystyle \lim_{x \rightarrow 0} \dfrac{\sin ^{-1} x}{x}\) [where \(\mathrm{x}\) is measured in radians]
Further if \(\displaystyle \lim_{x \rightarrow a} f(x)=0\), then \(\displaystyle \lim_{x \rightarrow a} \dfrac{\sin f(x)}{f(x)}=1\).



7. LIMIT OF EXPONENTIAL FUNCTIONS :

(a) \(\displaystyle \lim_{x \rightarrow 0} \dfrac{a^{x}-1}{x}=\ln a (a>0)\). In particular \(\displaystyle \lim_{x \rightarrow 0} \dfrac{e^{x}-1}{x}=1\).
In general if \(\displaystyle \lim_{x \rightarrow a} f(x)=0\),then \(\displaystyle \lim_{x \rightarrow a} \dfrac{a^{f(x)}-1}{f(x)}=\ell\) na, \(a>0\).

(b) \(\displaystyle \lim_{x \rightarrow 0} \dfrac{\ln (1+x)}{x}=1\)

(c) \(\displaystyle \lim_{x \rightarrow 0}(1+x)^{1 / x}=e=\displaystyle \lim_{x \rightarrow \infty}\left(1+\dfrac{1}{x}\right)^{x}\)

(Note : The base and exponent depends on the same variable.)
In general, if \(\displaystyle \lim_{x \rightarrow a} f(x)=0\), then \(\displaystyle \lim_{x \rightarrow a}(1+f(x))^{1 / f(x)}=e\)

(d) If \(\displaystyle \lim_{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{x})=1\) and \(\displaystyle \lim_{\mathrm{x} \rightarrow \mathrm{a}} \phi(\mathrm{x})=\infty\),
then \(\displaystyle \lim_{x \rightarrow a}[f(x)] \phi(x)=e^{k}\) where \(k=\displaystyle \lim_{x \rightarrow a} \phi(x)[f(x)-1]\)

(e) If \(\displaystyle \lim_{x \rightarrow a} f(x)=A>0 \& \displaystyle \lim_{x \rightarrow a} \phi(x)=B\) (a finite quantity),
then \(\displaystyle \lim_{x \rightarrow a}[f(x)]^{\phi(x)}=e^{B \ln A}=A^{B}\)



8. LIMIT USING SERIES EXPANSION :

Binomial expansion, exponential & logarithmic expansion, expansion of \(\sin x, \cos x\), tanx should be remembered by heart which are given below:

(a) \(\mathrm{a}^{\mathrm{x}}=1\)\(+\dfrac{\mathrm{x} \ell \mathrm{na}}{1 !}\)\(+\dfrac{\mathrm{x}^{2} \ln ^{2} \mathrm{a}}{2 !}\)\(+\dfrac{\mathrm{x}^{3} \ln ^{3} \mathrm{a}}{3 !}\)\(+\ldots, \mathrm{a}>0\)

(b) \(e^{x}=1\)\(+\dfrac{x}{1 !}\)\(+\dfrac{x^{2}}{2 !}\)\(+\dfrac{x^{3}}{3 !}\)\(+\ldots, x \in R\)

(c) \(\ln (1\)\(+\mathrm{x})=\mathrm{x}-\dfrac{\mathrm{x}^{2}}{2}\)\(+\dfrac{\mathrm{x}^{3}}{3}-\dfrac{\mathrm{x}^{4}}{4}\)\(+\ldots\), for \(-1<\mathrm{x} \leq 1\)

(d) \(\sin x=x-\dfrac{x^{3}}{3 !}\)\(+\dfrac{x^{5}}{5 !}-\dfrac{x^{7}}{7 !}\)\(+\ldots, x \in R\)

(e) \(\cos x=1-\dfrac{x^{2}}{2 !}\)\(+\dfrac{x^{4}}{4 !}-\dfrac{x^{6}}{6 !}\)\(+\ldots, x \in R\)

(f) \(\tan x=x\)\(+\dfrac{x^{3}}{3}\)\(+\dfrac{2 x^{5}}{15}\)\(+\ldots,|x|<\dfrac{\pi}{2}\)

(g) \(\tan ^{-1} \mathrm{x}=\mathrm{x}-\dfrac{\mathrm{x}^{3}}{3}\)\(+\dfrac{\mathrm{x}^{5}}{5}-\dfrac{\mathrm{x}^{7}}{7}\)\(+\ldots, \mathrm{x} \in \mathrm{R}\)

(h) \(\sin ^{-1} x=x\)\(+\dfrac{1^{2}}{3 !} x^{3}\)\(+\dfrac{1^{2} \cdot 3^{2}}{5 !} x^{5}\)\(+\dfrac{1^{2} \cdot 3^{2} \cdot 5^{2}}{7 !} x^{7}\)\(+\ldots, x \in[-1,1]\)

(i) \((1\)\(+x)^{n}=1\)\(+n x\)\(+\dfrac{n(n-1)}{2 !} x^{2}\)\(+\ldots, n \in R, x \in(-1,1)\).




Comments

Popular posts from this blog

Determinant - Notes, Concept and All Important Formula

DETERMINANT 1. MINORS : The minor of a given element of determinant is the determinant of the elements which remain after deleting the row & the column in which the given element stands. For example, the minor of \(a _{1}\) in \(\left|\begin{array}{lll} a _{1} & b _{1} & c _{1} \\ a _{2} & b _{2} & c _{2} \\ a _{3} & b _{3} & c _{3}\end{array}\right|\) is \(\left|\begin{array}{ll} b _{2} & c _{2} \\ b _{3} & c _{3}\end{array}\right| \&\) the minor of \(b_{2}\) is \(\quad\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{3} & c_{3}\end{array}\right|\) . Hence a determinant of order three will have " 9 minors". 2. COFACTORS : If \(M _{ ij }\) represents the minor of the element belonging to \(i ^{\text {th }}\) row and \(j ^{\text {th }}\) column then the cofactor of that element : \(C_{i j}=(-1)^{i+j} \cdot M_{i j}\) Important Note : Consider \(\Delta=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} ...

Circle- Notes, Concept and All Important Formula

CIRCLE 1. DEFINITION : A circle is the locus of a point which moves in a plane in such a way that its distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is called the radius of the circle. All Chapter Notes, Concept and Important Formula 2. STANDARD EQUATIONS OF THE CIRCLE : (a) Central Form: If \((\mathrm{h}, \mathrm{k})\) is the centre and \(\mathrm{r}\) is the radius of the circle then its equation is \((\mathbf{x}-\mathbf{h})^{2}+(\mathbf{y}-\mathbf{k})^{2}=\mathbf{r}^{2}\) (b) General equation of circle : \(\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{2 g x}+\mathbf{2 f y}+\mathbf{c}=\mathbf{0}\) , where \(g, \mathrm{f}, c\) are constants and centre is \((-g,-f)\) i.e. \(\left(-\frac{\text { coefficient of } \mathrm{x}}{2},-\frac{\text { coefficient of } \mathrm{y}}{2}\right)\) and radius \(r=\sqrt{g^{2}+f^{2}-c}\) Note : The general quadratic equation in \(\mathrm{x}\) and \(\mathrm{y}\) , \(a x^{2}+b y^{2}+2 ...

Difference and relation between Differentiation and Integration

Relation between Differentiation and Integration Table Of Contents Look at the information given below. \[\mathbf{ y=f(x)}\] \[ \mathbf{ f'(x)\rightarrow \text{Derivatives of f(x)}}\] \[ \mathbf{\displaystyle \int_a^b f’(x) = ?}\] Can you tell me the value of above integral? Yes, it will be equal to f(b)-f(a) . We have already known this result. It tells us that integration is just the reverse of differentiation, integral of the derivative of the function f(x) is just equal to the difference in the function f(x) evaluated at the limits of integration. Indefinite integration- Notes and Formula Part 1 Now with this topic, we will understand how to apply this result to find the integral of a function.  Consider this function \(\mathbf{g(x)=x^2}\) Let's find the integral of this function from a to b i.e \(\mathbf{\displaystyle \int_a^b g(x) \, dx}\) .  Can you think how we can apply this result to find ...