Skip to main content

Ellipse - Notes, Concept and All Important Formula

ELLIPSE

1. STANDARD EQUATION & DEFINITION :

Standard equation of an ellipse referred to its principal axis along the co-ordinate axis is \(\dfrac{\mathbf{x}^{2}}{\mathbf{a}^{2}}+\dfrac{\mathbf{y}^{2}}{\mathbf{b}^{2}}=\mathbf{1}\). where \(a>b \) & \( b^{2}=a^{2}\left(1-e^{2}\right)\)
\(\Rightarrow a^{2}-b^{2}=a^{2} e^{2} .\)
where \(e=\) eccentricity \((0<e<1)\).
Standard equation and definition of Ellipse
\(\mathrm{FOCI}: \mathrm{S} \equiv(\mathrm{ae}, 0) \) & \( \mathrm{~S}^{\prime} \equiv(-\mathrm{ae}, 0) .\)

(a) Equation of directrices :

\(\mathrm{x}=\dfrac{\mathrm{a}}{\mathrm{e}} \) & \( \mathrm{x}=-\dfrac{\mathrm{a}}{\mathrm{e}} \text { . }\)

(b) Vertices:

\(\mathrm{A}^{\prime} \equiv(-\mathrm{a}, 0) \quad \) & \( \mathrm{~A} \equiv(\mathrm{a}, 0)\)

(c) Major axis : The line segment \(A^{\prime} A\) in which the foci \(S^{\prime}\) & S lie is of length \(2 \mathrm{a} \) & \(\) is called the major axis \((a>b)\) of the ellipse. Point of intersection of major axis with directrix is called the foot of the directrix (Z) \(\left(\pm \dfrac{\mathrm{a}}{e}, 0\right)\).

(d) Minor Axis : The y-axis intersects the ellipse in the points \(B^{\prime} \equiv(0,-b) \) & \( B \equiv(0, b)\). The line segment \(B\) 'B of length \(2 \mathrm{~b}(\mathrm{~b}<\mathrm{a})\) is called the Minor Axis of the ellipse.

(e) Principal Axis : The major & minor axis together are called Principal Axis of the ellipse.

(f) Centre : The point which bisects every chord of the conic drawn through it is called the centre of the conic. \(C \equiv(0,0)\) the origin is the centre of the ellipse \(\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1\)

(g) Diameter: A chord of the conic which passes through the centre is called a diameter of the conic.

(h) Focal Chord : A chord which passes through a focus is called a focal chord.

(i) Double Ordinate : A chord perpendicular to the major axis is called a double ordinate with respect to major axis as diameter.

(j) Latus Rectum : The focal chord perpendicular to the major axis is called the latus rectum.

(i) Length of latus rectum

\(\left(\mathrm{LL}^{\prime}\right)=\dfrac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\dfrac{(\text { minor axis })^{2}}{\text { major axis }}=2 \mathrm{a}\left(1-e^{2}\right)\)

(ii) Equation of latus rectum : \(\mathrm{x}=\pm \mathrm{ae}\).

(iii) Ends of the latus rectum are \(\mathrm{L}\left(\mathrm{ae}, \dfrac{\mathrm{b}^{2}}{\mathrm{a}}\right), \mathrm{L}^{\prime}\left(\mathrm{ae},-\dfrac{\mathrm{b}^{2}}{\mathrm{a}}\right)\),

\(\mathrm{L}_{1}\left(-\mathrm{a} e, \dfrac{\mathrm{b}^{2}}{\mathrm{a}}\right) \text { and } \mathrm{L}_{1} \cdot\left(-\mathrm{ae},-\dfrac{\mathrm{b}^{2}}{\mathrm{a}}\right)\)

(k) Focal radii: \( \mathrm{SP}=\mathrm{a}-e \mathrm{x}\) and \(\mathrm{S}^{\prime} \mathrm{P}=\mathrm{a}+\mathrm{ex}\)

\(\Rightarrow \mathrm{SP}+\mathrm{S}^{\prime} \mathrm{P}=2 \mathrm{a}=\) Major axis.

(l) Eccentricity : \(e=\sqrt{1-\dfrac{b^{2}}{a^{2}}}\)




2. ANOTHER FORM OF ELLIPSE :

Another form of a Ellipse, vertical ellipse

\(\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1,(a<b)\)

(a) \(A A^{\prime}=\) Minor axis \(=2 a\)

(b) \(\mathrm{BB}^{\prime}=\) Major axis \(=2 \mathrm{~b}\)

(c) \(a^{2}=b^{2}\left(1-e^{2}\right)\)

(d) Latus rectum

\(\mathrm{LL}^{\prime}=\mathrm{L}_{1} \mathrm{~L}_{1}^{\prime}=\dfrac{2 \mathrm{a}^{2}}{\mathrm{~b}} \text { . }\) equation \(y=\pm\) be

(e) Ends of the latus rectum are:

\(\mathrm{L}\left(\dfrac{\mathrm{a}^{2}}{\mathrm{~b}},\mathrm{be}\right),\)\( \mathrm{L}^{\prime}\left(-\dfrac{\mathrm{a}^{2}}{\mathrm{~b}}, \mathrm{be}\right),\) \( \mathrm{L}_{1}\left(\dfrac{\mathrm{a}^{2}}{\mathrm{~b}},-\mathrm{be}\right),\) \( \mathrm{L}_{1} \cdot\left(-\dfrac{\mathrm{a}^{2}}{\mathrm{~b}},-\mathrm{be}\right)\)

(f) Equation of directrix \(y=\pm \dfrac{b}{e}\).

(g) Eccentricity : \(e=\sqrt{1-\dfrac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}}\)




3. GENERAL EQUATION OF AN ELLIPSE :

General equation of Ellipse

Let \((a, b)\) be the focus \(S\), and \(l x+m y+n=\) 0 is the equation of directrix. Let \(\mathrm{P}(\mathrm{x}, \mathrm{y})\) be any point on the ellipse. Then by definition.

\(\Rightarrow \mathrm{SP}=e\) PM (e is the eccentricity)
\(\Rightarrow(x-a)^{2}+(y-b)^{2}=e^{2} \dfrac{(l x+m y+n)^{2}}{\left(l^{2}+m^{2}\right)}\)
\(\Rightarrow\left(l^{2}+m^{2}\right)\left\{(x-a)^{2}+(y-b)^{2}\right\}\)\(=e^{2}\{l x+m y+n\}^{2}\)



4. POSITION OF A POINT W.R.T. AN ELLIPSE:

The point \(\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) lies outside, inside or on the ellipse according as \(\dfrac{\mathrm{x}_{1}^{2}}{\mathrm{a}^{2}}+\dfrac{\mathrm{y}_{1}^{2}}{\mathrm{~b}^{2}}-1><\) or \(=0\)




5. AUXILIARY CIRCLE/ECCENTRIC ANGLE :

AUXILIARY CIRCLE/ECCENTRIC ANGLE OF ELLIPSE

A circle described on major axis as diameter is called the auxiliary circle. Let \(Q\) be a point on the auxiliary circle \(x^{2}+y^{2}=a^{2}\) such that QP produced is perpendicular to the \(\mathrm{x}\) -axis then \(\mathrm{P} \) & \( \mathrm{Q}\) are called as the CORRESPONDING POINTS on the ellipse & the auxiliary circle respectively. ' \(\theta\) ' is called the ECCENTRIC ANGLE of the point \(\mathrm{P}\) on the ellipse \((0 \leq \theta<2 \pi)\).

Note that \(\dfrac{l(\mathrm{PN})}{l(\mathrm{QN})}=\dfrac{\mathrm{b}}{\mathrm{a}}=\dfrac{\text { Semi minor axis }}{\text { Semi major axis }}\)

Hence "If from each point of a circle perpendiculars are drawn upon a fixed diameter then the locus of the points dividing these perpendiculars in a given ratio is an ellipse of which the given circle is the auxiliary circle".




6. PARAMATRIC REPRESENTATION:

The equations \(\mathrm{x}=\mathrm{a} \cos \theta \) & \( \mathrm{y}=\mathrm{b} \sin \theta\) together represent the ellipse \(\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1\)
where \(\theta\) is a parameter (eccentric angle). 

Note that if 
\(\mathrm{P}(\theta) \equiv(\mathrm{a} \cos \theta, \mathrm{b} \sin \theta)\) is on the ellipse then ;
\(Q(\theta) \equiv(a \cos \theta, a \sin \theta)\) is on the auxiliary circle.



7. LINE AND AN ELLIPSE :

The line \(y=m x+c\) meets the ellipse \(\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1\) in two real points, coincident or imaginary according as \(\mathrm{c}^{2}\) is \(<=\) or \(>\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}\).
Hence \(y=m x+c\) is tangent to the ellipse \(\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1\) if \(c^{2}=a^{2} m^{2}+b^{2}\). The equation to the chord of the ellipse joining two points with eccentric angles \(\alpha \) & \( \beta\) is given by \(\dfrac{x}{a} \cos \dfrac{\alpha+\beta}{2}+\dfrac{y}{b} \sin \dfrac{\alpha+\beta}{2}=\cos \dfrac{\alpha-\beta}{2}\).



8. TANGENT TO THE ELLIPSE \(\mathbf{\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1}:\) 

(a) Point form :

Equation of tangent to the given ellipse at its point \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) is \(\dfrac{\mathrm{xx}_{1}}{\mathrm{a}^{2}}+\dfrac{\mathrm{y} \mathrm{y}_{1}}{\mathrm{~b}^{2}}=1\)

(b) Slope form:

Equation of tangent to the given ellipse whose slope is 'm', is \(y=m x \pm \sqrt{a^{2} m^{2}+b^{2}}\)
Point of contact are \(\left(\dfrac{\pm a^{2} m}{\sqrt{a^{2} m^{2}+b^{2}}}, \dfrac{\mp b^{2}}{\sqrt{a^{2} m^{2}+b^{2}}}\right)\)

(c) Parametric form:

Equation of tangent to the given ellipse at its point \((a \cos \theta, b \sin \theta)\), is \(\dfrac{x \cos \theta}{a}+\dfrac{y \sin \theta}{b}=1\)




9. NORMAL TO THE ELLIPSE \(\mathbf{\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1}:\) 

(a) Point form : Equation of the normal to the given ellipse at \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \text { is } \dfrac{\mathrm{a}^{2} \mathrm{x}}{\mathrm{x}_{1}}-\dfrac{\mathrm{b}^{2} \mathrm{y}}{\mathrm{y}_{1}}=\mathrm{a}^{2}-\mathrm{b}^{2}=\mathrm{a}^{2} e^{2}\)

(b) Slope form : Equation of a normal to the given ellipse whose slope is 'm' is \(y=m x \mp \dfrac{\left(a^{2}-b^{2}\right) m}{\sqrt{a^{2}+b^{2} m^{2}}}\).

(c) Parametric form : Equation of the normal to the given ellipse at the \(\operatorname{point}(a \cos \theta, b \sin \theta)\) is  \(ax\sec \theta- by \operatorname{cosec} \theta=\left(a^{2}-b^{2}\right)\)




10. CHORD OF CONTACT :

If \(\mathrm{PA}\) and \(\mathrm{PB}\) be the tangents from point \(\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) to the ellipse \(\dfrac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\dfrac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1\)
then the equation of the chord of contact \(\mathrm{AB}\) is \(\dfrac{\mathrm{xx}_{1}}{\mathrm{a}^{2}}+\dfrac{\mathrm{y} \mathrm{y}_{1}}{\mathrm{~b}^{2}}=1\) or \(\mathrm{T}=0\) at \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\)



11. PAIR OR TANGENTS :

Pair of tangent on ellipse

If \(\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) be any point lies outside the ellipse \(\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1\) and a pair of tangents PA, \(\mathrm{PB}\) can be drawn to it from \(\mathrm{P}\). Then the equation of pair of tangents of \(\mathrm{PA}\) and \(\mathrm{PB}\) is \(\mathrm{SS}_{1}=\mathrm{T}^{2}\)

where \(\quad S_{1}=\dfrac{x_{1}^{2}}{a^{2}}+\dfrac{y_{1}^{2}}{b^{2}}-1,\)  \( T=\dfrac{x x_{1}}{a^{2}}+\dfrac{y y_{1}}{b^{2}}-1\)

i.e. \(\left(\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}-1\right)\left(\dfrac{x_{1}^{2}}{a^{2}}+\dfrac{y_{1}^{2}}{b^{2}}-1\right)\)\(=\left(\dfrac{x x_{1}}{a^{2}}+\dfrac{y y_{1}}{b^{2}}-1\right)^{2}\)




12. DIRECTOR CIRCLE :

Locus of the point of intersection of the tangents which meet at right angles is called the Director Circle. The equation to this locus is \(\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}\) i.e. a circle whose centre is the centre of the ellipse & whose radius is the length of the line joining the ends of the major  &  minor axis.




13. EQUATION OF CHORD WITH MID POINT \(\mathbf{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)}\) :

The equation of the chord of the ellipse \(\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1\), whose mid-point be \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) is \(\mathrm{T}=\mathrm{S}_{1}\)
where \(\mathrm{T}=\dfrac{\mathrm{xx}_{1}}{\mathrm{a}^{2}}+\dfrac{y \mathrm{y}_{1}}{\mathrm{~b}^{2}}-1, \mathrm{~S}_{1}=\dfrac{\mathrm{x}_{1}^{2}}{\mathrm{a}^{2}}+\dfrac{\mathrm{y}_{1}^{2}}{\mathrm{~b}^{2}}-1\)
i.e. \(\left(\dfrac{x x_{1}}{a^{2}}+\dfrac{y y_{1}}{b^{2}}-1\right)=\left(\dfrac{x_{1}^{2}}{a^{2}}+\dfrac{y_{1}^{2}}{b^{2}}-1\right)\)



14. IMPORTANT HIGHLIGHTS for \(\mathbf{\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1}\) :

Important highlights of ellipse

(I) The tangent & normal at a point \(\mathrm{P}\) on the ellipse bisect the external & internal angles between the focal distances of \(\mathrm{P}\). This refers to the well known reflection property of the ellipse which states that rays from one focus are reflected through other focus & vice-versa.

(II) Point of intersection of the tangents at the point \(\alpha \) & \( \beta\) is \(\left(a \dfrac{\cos \frac{\alpha+\beta}{2}}{\cos \frac{\alpha-\beta}{2}}, b \dfrac{\sin \frac{\alpha+\beta}{2}}{\cos \frac{\alpha-\beta}{2}}\right)\)

(III) If \(\mathrm{A}(\alpha), \mathrm{B}(\beta), \mathrm{C}(\gamma) \) & \( \mathrm{D}(\delta)\) are conormal points then sum of their eccentric angles is odd multiple of \(\pi\). i.e. \(\alpha+\beta+\gamma+\delta=(2 \mathrm{n}+1) \pi\).

(IV) If \(A(\alpha), B(\beta), C(\gamma) \) & \( D(\delta)\) are four concyclic points then sum of their eccentric angles is even multiple of \(\pi\). i.e. \(\alpha+\beta+\gamma+\delta=2 \mathrm{n} \pi\)

(V) The product of the length's of the perpendicular segments from the foci on any tangent to the ellipse is \(b^{2}\) and the feet of these perpendiculars lie on its auxiliary circle.




Comments

  1. Thanks sir! I'm really really grateful to you. Take my regards from Bangladesh.

    ReplyDelete

Post a Comment

Popular posts from this blog

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of \(x\) such that \(F^{\prime}(x)\) \(=f(x)\) then the function \(F\) is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of \(\mathrm{f}(\mathrm{x})\) w.r.t. \(\mathrm{x}\) and is written symbolically as \(\displaystyle \int \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}\) \(=\mathrm{F}(\mathrm{x})+\mathrm{c} \Leftrightarrow \dfrac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{F}(\mathrm{x})+\mathrm{c}\}\) \(=\mathrm{f}(\mathrm{x})\) , where \(\mathrm{c}\) is called the constant of integration. Note : If \(\displaystyle \int f(x) d x\) \(=F(x)+c\) , then \(\displaystyle \int f(a x+b) d x\) \(=\dfrac{F(a x+b)}{a}+c, a \neq 0\) All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) \( \displaystyle \int(a x+b)^{n} d x\) \(=\dfrac{(a x+b)^{n+1}}{a(n+1)}+c ; n \neq-1\) (ii) \(\displaystyle \int \dfrac{d x}{a x+b}\) \(=\dfrac{1}{a} \ln|a x+b|+c\) (iii) \(\displaystyle \int e^{\mathrm{ax}+b} \mathrm{dx}\) \(=\dfrac{1}{...

Logarithm - Notes, Concept and All Important Formula

LOGARITHM LOGARITHM OF A NUMBER : The logarithm of the number \(\mathrm{N}\) to the base ' \(\mathrm{a}\) ' is the exponent indicating the power to which the base 'a' must be raised to obtain the number \(\mathrm{N}\) . This number is designated as \(\log _{\mathrm{a}} \mathrm{N}\) . (a) \(\log _{a} \mathrm{~N}=\mathrm{x}\) , read as \(\log\) of \(\mathrm{N}\) to the base \(\mathrm{a} \Leftrightarrow \mathrm{a}^{\mathrm{x}}=\mathrm{N}\) . If \(a=10\) then we write \(\log N\) or \(\log _{10} \mathrm{~N}\) and if \(\mathrm{a}=e\) we write \(\ln N\) or \(\log _{e} \mathrm{~N}\) (Natural log) (b) Necessary conditions : \(\mathrm{N}> \,\,0 ; \,\, \mathrm{a}> \,\,0 ; \,\, \mathrm{a} \neq 1\) (c) \(\log _{a} 1=0\) (d) \(\log _{a} a=1\) (e) \(\log _{1 / a} a=-1\) (f) \(\log _{a}(x . y)=\log _{a} x+\log _{a} y ; \,\, x, y> \,\,0\) (g) \(\log _{a}\left(\dfrac{\mathrm{x}}{y}\right)=\log _{\mathrm{a}} \mathrm{x}-\log _{\mathrm{a}} \mathrm{y} ; \,\, \mathrm{...

Trigonometry Equation - Notes, Concept and All Important Formula

TRIGONOMETRIC EQUATION 1. TRIGONOMETRIC EQUATION : An equation involving one or more trigonometrical ratios of unknown angles is called a trigonometric equation. All Chapter Notes, Concept and Important Formula 2. SOLUTION OF TRIGONOMETRIC EQUATION : A value of the unknown angle which satisfies the given equations is called a solution of the trigonometric equation. (a) Principal solution :- The solution of the trigonometric equation lying in the interval \([0,2 \pi]\) . (b) General solution :- Since all the trigonometric functions are many one & periodic, hence there are infinite values of \(\theta\) for which trigonometric functions have the same value. All such possible values of \(\theta\) for which the given trigonometric function is satisfied is given by a general formula. Such a general formula is called general solutions of trigonometric equation. 3. GENERAL SOLUTIONS OF SOME TRIGONOMETRICE EQUATIONS (TO BE REMEMBERED) :   (a) If \(\sin \theta=0\) , then \(\theta=...