Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip to main content

Definite Integration - Notes, Concept and All Important Formula

DEFINITE INTEGRATION

1. (a) The Fundamental Theorem of Calculus, Part 1:

If f is continuous on [a,b], then the function g defined by

g(x)=xaf(t)dt,  axb is continuous on [a,b] and differentiable on (a,b), and g(x)=f(x).

(b) The Fundamental Theorem of Calculus, Part 2:

If f is continuous on [a,b], then baf(x)dx=F(b)F(a) where F is any antiderivative of f, that is, a function such that F=f.

Note : If baf(x)dx=0 then the equation f(x)=0 has atleast one root lying in (a,b) provided f is a continuous function in (a,b).




2. Representation of Definite Integration

 A definite integral is denoted by baf(x)dx which represents the algebraic area bounded by the curve y=f(x), the ordinates x=a, x=b and the x -axis. ex. 2π0sinxdx=0



3. PROPERTIES OF DEFINITE INTEGRAL:

(a) baf(x)dx=baf(t)dtbaf(x)dx does not depend upon x. It is a numerical quantity.

(b) baf(x)dx=abf(x)dx

(c) baf(x)dx=caf(x)dx+bcf(x)dx, where c may lie inside or outside the interval [a,b]. This property to be used when f is piecewise continuous in (a,b).

(d) aaf(x)dx=a0[f(x)+f(x)]dx=[0 if f(x) is an odd function 2a0f(x)dx if f(x) is an even function 

(e) baf(x)dx=baf(a+bx)dx, In particular a0f(x)dx=a0f(ax)dx

(f) 2a0f(x)dx=a0f(x)dx+a0f(2ax)dx=[2a0(x)dx if f(2ax)=f(x)0 if f(2ax)=f(x)

(g) nT0f(x)dx=nT0f(x)dx,(nI); where 'T' is the period of the function i.e. f(T+x)=f(x)

Note that : T+xxf(t) dt will be independent of x and equal to T0f(t) dt

(h) b+nTa+nTf(x)dx=baf(x)dx where f(x) is periodic with period T & nI.

(i) namaf(x)dx=(nm)a0f(x)dx,(n,mD) if f(x) is periodic with period'a'.




4. WALLI'S FORMULA :

(a) π/20sinnxdx=π/20cosnxdx=(n1)(n3).(1 or 2)n(n2)..(1 or 2)K

where K={π/2 if n is even 1 if n is odd 

(b) π/20sinnxcosmxdx

=[(n1)(n3)(n5)1 or 2][(m1)(m3).1 or 2](m+n)(m+n2)(m+n4).1 or 2 K

Where K={π2 if both m and n are even (m,nN)1 otherwise 




5. DERIVATIVE OF ANTIDERIVATIVE FUNCTION (NewtonLeibnitz Formula)

If h(x) &  g(x) are differentiable functions of x then

ddxh(x)g(x)f(t)dt=f[h(x)]h(x)f[g(x)]g(x)




6. DEFINITE INTEGRAL AS LIMIT OF A SUM 

ba(x)dx=limnh[f(a)+f(a+h)+f(a+2h)+..+f(a+¯n1h)]=limhhn1r=0f(a+rh), where ba=nh

If a=0 & b=1 then, limnn1r=0f(rh)=10f(x)dx; where nh=1

OR limn(1n)n1r=1f(rn)=10f(x)dx




7. ESTIMATION OF DEFINTE INTEGRAL 

(a) If f(x) is continuous in [a,b] and it's range in this interval is [m, M], then m(ba)baf(x)dxM(ba)

(b) If f(x)ϕ(x) for axb then baf(x)dxbaϕ(x)dx

(c) |baf(x)dx|ba|f(x)|dx.

(d) If f(x)0 on the interval [a,b], then baf(x)dx0.

(e) f(x) and g(x) are two continuous function on [a,b] then |baf(x)g(x)dx|baf2(x)dxbag2(x)dx




8. SOME STANDARD RESULTS :

(a) π/20logsinxdx=π2log2=π/20logcosxdx

(b) ba{x}dx=ba2;a,bI

(c) ba|x|xdx=|b||a|.




Comments

Popular posts from this blog

Logarithm - Notes, Concept and All Important Formula

LOGARITHM LOGARITHM OF A NUMBER : The logarithm of the number N to the base ' a ' is the exponent indicating the power to which the base 'a' must be raised to obtain the number N . This number is designated as logaN . (a) loga N=x , read as log of N to the base aax=N . If a=10 then we write logN or log10 N and if a=e we write lnN or loge N (Natural log) (b) Necessary conditions : N>0;a>0;a1 (c) loga1=0 (d) logaa=1 (e) log1/aa=1 (f) loga(x.y)=logax+logay;x,y>0 (g) \(\log _{a}\left(\dfrac{\mathrm{x}}{y}\right)=\log _{\mathrm{a}} \mathrm{x}-\log _{\mathrm{a}} \mathrm{y} ; \,\, \mathrm{...

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of x such that F(x) =f(x) then the function F is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of f(x) w.r.t. x and is written symbolically as f(x)dx =F(x)+cddx{F(x)+c} =f(x) , where c is called the constant of integration. Note : If f(x)dx =F(x)+c , then f(ax+b)dx =F(ax+b)a+c,a0 All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) (ax+b)ndx =(ax+b)n+1a(n+1)+c;n1 (ii) dxax+b =1aln|ax+b|+c (iii) eax+bdx \(=\dfrac{1}{...

Straight Line - Notes, Concept and All Important Formula

STRAIGHT LINE Table Of Contents 1. RELATION BETWEEN CARTESIAN CO-ORDINATE & POLAR CO-ORDINATE SYSTEM If (x,y) are Cartesian co-ordinates of a point P , then : x=rcosθ , y=rsinθ and r=x2+y2,θ=tan1(yx) All Chapter Notes, Concept and Important Formula 2. DISTANCE FORMULA AND ITS APPLICATIONS : If A(x1,y1) and B(x2,y2) are two points, then AB=(x2x1)2+(y2y1)2 Note : (i) Three given points A,B and C are collinear, when sum of any two distances out of AB,BC,CA is equal to the remaining third otherwise the points will be the vertices of triangle. (ii) Let A,B,C&D be the four given points in a plane. Then the quadrilateral will be: (a) Square if \(A B=B C=C D=D...