DEFINITE INTEGRATION
- 1. (a) The Fundamental Theorem of Calculus, Part 1:
- (b) The Fundamental Theorem of Calculus, Part 2:
- 2. Representation of Definite Integration
- 3. PROPERTIES OF DEFINITE INTEGRAL:
- 4. WALLI'S FORMULA :
- 5. DERIVATIVE OF ANTIDERIVATIVE FUNCTION (NewtonLeibnitz Formula)
- 6. DEFINITE INTEGRAL AS LIMIT OF A SUM
- 7. ESTIMATION OF DEFINTE INTEGRAL
- 8. SOME STANDARD RESULTS :
1. (a) The Fundamental Theorem of Calculus, Part 1:
If f is continuous on [a,b], then the function g defined by
g(x)=∫xaf(t)dt, a≤x≤b is continuous on [a,b] and differentiable on (a,b), and g′(x)=f(x).
(b) The Fundamental Theorem of Calculus, Part 2:
If f is continuous on [a,b], then ∫baf(x)dx=F(b)−F(a) where F is any antiderivative of f, that is, a function such that F′=f.
Note : If ∫baf(x)dx=0⇒ then the equation f(x)=0 has atleast one root lying in (a,b) provided f is a continuous function in (a,b).
2. Representation of Definite Integration
3. PROPERTIES OF DEFINITE INTEGRAL:
(a) ∫baf(x)dx=∫baf(t)dt⇒∫baf(x)dx does not depend upon x. It is a numerical quantity.
(b) ∫baf(x)dx=−∫abf(x)dx
(c) ∫baf(x)dx=∫caf(x)dx+∫bcf(x)dx, where c may lie inside or outside the interval [a,b]. This property to be used when f is piecewise continuous in (a,b).
(d) ∫a−af(x)dx=∫a0[f(x)+f(−x)]dx=[0 if f(x) is an odd function 2∫a0f(x)dx if f(x) is an even function
(e) ∫baf(x)dx=∫baf(a+b−x)dx, In particular ∫a0f(x)dx=∫a0f(a−x)dx
(f) ∫2a0f(x)dx=∫a0f(x)dx+∫a0f(2a−x)dx=[2∫a0(x)dx if f(2a−x)=f(x)0 if f(2a−x)=−f(x)
(g) ∫nT0f(x)dx=n∫T0f(x)dx,(n∈I); where 'T' is the period of the function i.e. f(T+x)=f(x)
Note that : ∫T+xxf(t) dt will be independent of x and equal to ∫T0f(t) dt
(h) ∫b+nTa+nTf(x)dx=∫baf(x)dx where f(x) is periodic with period T & n∈I.
(i) ∫namaf(x)dx=(n−m)∫a0f(x)dx,(n,m∈D) if f(x) is periodic with period'a'.
4. WALLI'S FORMULA :
(a) ∫π/20sinnxdx=∫π/20cosnxdx=(n−1)(n−3)….(1 or 2)n(n−2)…..(1 or 2)K
where K={π/2 if n is even 1 if n is odd
(b) ∫π/20sinnx⋅cosmxdx
=[(n−1)(n−3)(n−5)…1 or 2][(m−1)(m−3)….1 or 2](m+n)(m+n−2)(m+n−4)….1 or 2 K
Where K={π2 if both m and n are even (m,n∈N)1 otherwise
5. DERIVATIVE OF ANTIDERIVATIVE FUNCTION (NewtonLeibnitz Formula)
If h(x) & g(x) are differentiable functions of x then
ddx∫h(x)g(x)f(t)dt=f[h(x)]⋅h′(x)−f[g(x)]⋅⋅g′(x)
6. DEFINITE INTEGRAL AS LIMIT OF A SUM
∫ba(x)dx=limn→∞h[f(a)+f(a+h)+f(a+2h)+…..+f(a+¯n−1h)]=limh→∞hn−1∑r=0f(a+rh), where b−a=nh
If a=0 & b=1 then, limn→∞n−1∑r=0f(rh)=∫10f(x)dx; where nh=1
OR limn→∞(1n)n−1∑r=1f(rn)=∫10f(x)dx
7. ESTIMATION OF DEFINTE INTEGRAL
(a) If f(x) is continuous in [a,b] and it's range in this interval is [m, M], then m(b−a)≤∫baf(x)dx≤M(b−a)
(b) If f(x)≤ϕ(x) for a≤x≤b then ∫baf(x)dx≤∫baϕ(x)dx
(c) |∫baf(x)dx|≤∫ba|f(x)|dx.
(d) If f(x)≥0 on the interval [a,b], then ∫baf(x)dx≥0.
(e) f(x) and g(x) are two continuous function on [a,b] then |∫baf(x)g(x)dx|≤√∫baf2(x)dx∫bag2(x)dx
8. SOME STANDARD RESULTS :
(a) ∫π/20logsinxdx=−π2log2=∫π/20logcosxdx
(b) ∫ba{x}dx=b−a2;a,b∈I
(c) ∫ba|x|xdx=|b|−|a|.
Comments
Post a Comment