Skip to main content

Continuity - Notes, Concept and All Important Formula

CONTINUITY

1. CONTINUOUS FUNCTIONS:

A function \(f(x)\) is said to be continuous at \(x=a\), if \(\displaystyle \lim _{x \rightarrow a} f(x)\) exists and is equal to \(f(\) a). Symbolically \(f(x)\) is continuous at \(x=a\).
If \(\displaystyle \lim _{h \rightarrow 0} f(a-h)=\displaystyle \lim _{h \rightarrow 0} f(a+h)=f(a)=\) finite and fixed quantity \((\mathrm{h}>0)\).
i.e. \(\left.\mathrm{LHL}\right|_{\mathrm{x}=\mathrm{a}}=\left.\mathrm{RHL}\right|_{\mathrm{x}=\mathrm{a}}=\) value of \(\left.f(\mathrm{x})\right|_{\mathrm{x}=\mathrm{a}}=\) finite and fixed quantity.
At isolated points functions are considered to be continuous.



2. CONTINUITY OF THE FUNCTION IN AN INTERVAL:

(a) A function is said to be continuous in \((a, b)\) if \(f\) is continuous at each & every point belonging to \((a, b)\).

(b) A function is said to be continuous in a closed interval \([a, b]\) if :

 \(\circ\,\, \mathrm{f}\) is continuous in the open interval \((a, b)\).

 \(\circ \,\, \mathrm{f}\) is right continuous at 'a' i.e. \(\displaystyle \lim_{x \rightarrow a^{+}} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{a})=\mathrm{a}\) finite quantity.

 \(\circ\,\, \mathrm{f}\) is left continuous at 'b' i.e. \(\displaystyle \lim_{x \rightarrow h^{-}} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{b})=\mathrm{a}\) finite quantity.

Note :

(i) All Polynomials, Trigonometrical functions, exponential & Logarithmic functions are continuous in their domains.

(ii) If \(\mathrm{f} \) & \(\mathrm{~g}\) are two functions that are continuous at \(\mathrm{x}=\mathrm{c}\) then the function defined by : \(\mathrm{F}_{1}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \pm \mathrm{g}(\mathrm{x}) ; \mathrm{F}_{2}(\mathrm{x})=\mathrm{K} \mathrm{f}(\mathrm{x}), \mathrm{K}\) any real number, \(\mathrm{F}_{3}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})\) are also continuous at \(\mathrm{x}=\mathrm{c}\). Further, if \(g(c)\) is not zero, then \(F_{4}(x)=\dfrac{f(x)}{g(x)}\) is also continuous at \(x=c\).

(iii) If \(f\) and \(g\) are continuous then fog and gof are also continuous.

(iv) If \(f\) and \(g\) are discontinuous at \(x=c\), then \(f+g, f-g, f . g\) may still be continuous.

(v) Sum or difference of a continuous and a discontinuous function is always discontinuous.




3. REASONS OF DISCONTINUITY:

REASONS OF DISCONTINUITY

(a) Limit does not exist i.e. \(\displaystyle \lim_{x \rightarrow a^{-}} f(x) \neq \displaystyle \lim_{x \rightarrow a^{+}} f(x)\)

(b) \(\displaystyle \lim_{x \rightarrow a} f(x) \neq f(a)\) Geometrically, the graph of the function will exhibit a break at \(\mathrm{x}=\mathrm{a}\), if the function is discontinuous at \(\mathrm{x}=\mathrm{a}\). The graph as shown is discontinuous at \(\mathrm{x}=1,2\) and 3 .




4. THE INTERMEDIATE VALUE THEOREM :

Suppose \(\mathrm{f}(\mathrm{x})\) is continuous on an interval \(\mathrm{I}\) and \(\mathrm{a}\) and \(\mathrm{b}\) are any two points of I. Then if \(y_{0}\) is a number between \(f(a)\) and \(f(b)\), their exists a number \(c\) between \(a\) and \(b\) such that \(f(c)=y_{0}.\)

THE INTERMEDIATE VALUE THEOREM

Note that a function \(\mathrm{f}\) which is continuous in \([\mathrm{a}, \mathrm{b}]\) possesses the following property.

If \(\mathrm{f}(\mathrm{a}) \) & \(\mathrm{f}(\mathrm{b})\) posses opposite signs, then there exists atleast one solution of the equation \(\mathrm{f}(\mathrm{x})=0\) in the open interval \((\mathrm{a}, \mathrm{b}).\)



Comments

Popular posts from this blog

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of \(x\) such that \(F^{\prime}(x)\) \(=f(x)\) then the function \(F\) is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of \(\mathrm{f}(\mathrm{x})\) w.r.t. \(\mathrm{x}\) and is written symbolically as \(\displaystyle \int \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}\) \(=\mathrm{F}(\mathrm{x})+\mathrm{c} \Leftrightarrow \dfrac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{F}(\mathrm{x})+\mathrm{c}\}\) \(=\mathrm{f}(\mathrm{x})\) , where \(\mathrm{c}\) is called the constant of integration. Note : If \(\displaystyle \int f(x) d x\) \(=F(x)+c\) , then \(\displaystyle \int f(a x+b) d x\) \(=\dfrac{F(a x+b)}{a}+c, a \neq 0\) All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) \( \displaystyle \int(a x+b)^{n} d x\) \(=\dfrac{(a x+b)^{n+1}}{a(n+1)}+c ; n \neq-1\) (ii) \(\displaystyle \int \dfrac{d x}{a x+b}\) \(=\dfrac{1}{a} \ln|a x+b|+c\) (iii) \(\displaystyle \int e^{\mathrm{ax}+b} \mathrm{dx}\) \(=\dfrac{1}{...

Logarithm - Notes, Concept and All Important Formula

LOGARITHM LOGARITHM OF A NUMBER : The logarithm of the number \(\mathrm{N}\) to the base ' \(\mathrm{a}\) ' is the exponent indicating the power to which the base 'a' must be raised to obtain the number \(\mathrm{N}\) . This number is designated as \(\log _{\mathrm{a}} \mathrm{N}\) . (a) \(\log _{a} \mathrm{~N}=\mathrm{x}\) , read as \(\log\) of \(\mathrm{N}\) to the base \(\mathrm{a} \Leftrightarrow \mathrm{a}^{\mathrm{x}}=\mathrm{N}\) . If \(a=10\) then we write \(\log N\) or \(\log _{10} \mathrm{~N}\) and if \(\mathrm{a}=e\) we write \(\ln N\) or \(\log _{e} \mathrm{~N}\) (Natural log) (b) Necessary conditions : \(\mathrm{N}> \,\,0 ; \,\, \mathrm{a}> \,\,0 ; \,\, \mathrm{a} \neq 1\) (c) \(\log _{a} 1=0\) (d) \(\log _{a} a=1\) (e) \(\log _{1 / a} a=-1\) (f) \(\log _{a}(x . y)=\log _{a} x+\log _{a} y ; \,\, x, y> \,\,0\) (g) \(\log _{a}\left(\dfrac{\mathrm{x}}{y}\right)=\log _{\mathrm{a}} \mathrm{x}-\log _{\mathrm{a}} \mathrm{y} ; \,\, \mathrm{...

Trigonometry Equation - Notes, Concept and All Important Formula

TRIGONOMETRIC EQUATION 1. TRIGONOMETRIC EQUATION : An equation involving one or more trigonometrical ratios of unknown angles is called a trigonometric equation. All Chapter Notes, Concept and Important Formula 2. SOLUTION OF TRIGONOMETRIC EQUATION : A value of the unknown angle which satisfies the given equations is called a solution of the trigonometric equation. (a) Principal solution :- The solution of the trigonometric equation lying in the interval \([0,2 \pi]\) . (b) General solution :- Since all the trigonometric functions are many one & periodic, hence there are infinite values of \(\theta\) for which trigonometric functions have the same value. All such possible values of \(\theta\) for which the given trigonometric function is satisfied is given by a general formula. Such a general formula is called general solutions of trigonometric equation. 3. GENERAL SOLUTIONS OF SOME TRIGONOMETRICE EQUATIONS (TO BE REMEMBERED) :   (a) If \(\sin \theta=0\) , then \(\theta=...