Skip to main content

Continuity - Notes, Concept and All Important Formula

CONTINUITY

1. CONTINUOUS FUNCTIONS:

A function \(f(x)\) is said to be continuous at \(x=a\), if \(\displaystyle \lim _{x \rightarrow a} f(x)\) exists and is equal to \(f(\) a). Symbolically \(f(x)\) is continuous at \(x=a\).
If \(\displaystyle \lim _{h \rightarrow 0} f(a-h)=\displaystyle \lim _{h \rightarrow 0} f(a+h)=f(a)=\) finite and fixed quantity \((\mathrm{h}>0)\).
i.e. \(\left.\mathrm{LHL}\right|_{\mathrm{x}=\mathrm{a}}=\left.\mathrm{RHL}\right|_{\mathrm{x}=\mathrm{a}}=\) value of \(\left.f(\mathrm{x})\right|_{\mathrm{x}=\mathrm{a}}=\) finite and fixed quantity.
At isolated points functions are considered to be continuous.



2. CONTINUITY OF THE FUNCTION IN AN INTERVAL:

(a) A function is said to be continuous in \((a, b)\) if \(f\) is continuous at each & every point belonging to \((a, b)\).

(b) A function is said to be continuous in a closed interval \([a, b]\) if :

 \(\circ\,\, \mathrm{f}\) is continuous in the open interval \((a, b)\).

 \(\circ \,\, \mathrm{f}\) is right continuous at 'a' i.e. \(\displaystyle \lim_{x \rightarrow a^{+}} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{a})=\mathrm{a}\) finite quantity.

 \(\circ\,\, \mathrm{f}\) is left continuous at 'b' i.e. \(\displaystyle \lim_{x \rightarrow h^{-}} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{b})=\mathrm{a}\) finite quantity.

Note :

(i) All Polynomials, Trigonometrical functions, exponential & Logarithmic functions are continuous in their domains.

(ii) If \(\mathrm{f} \) & \(\mathrm{~g}\) are two functions that are continuous at \(\mathrm{x}=\mathrm{c}\) then the function defined by : \(\mathrm{F}_{1}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \pm \mathrm{g}(\mathrm{x}) ; \mathrm{F}_{2}(\mathrm{x})=\mathrm{K} \mathrm{f}(\mathrm{x}), \mathrm{K}\) any real number, \(\mathrm{F}_{3}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})\) are also continuous at \(\mathrm{x}=\mathrm{c}\). Further, if \(g(c)\) is not zero, then \(F_{4}(x)=\dfrac{f(x)}{g(x)}\) is also continuous at \(x=c\).

(iii) If \(f\) and \(g\) are continuous then fog and gof are also continuous.

(iv) If \(f\) and \(g\) are discontinuous at \(x=c\), then \(f+g, f-g, f . g\) may still be continuous.

(v) Sum or difference of a continuous and a discontinuous function is always discontinuous.




3. REASONS OF DISCONTINUITY:

REASONS OF DISCONTINUITY

(a) Limit does not exist i.e. \(\displaystyle \lim_{x \rightarrow a^{-}} f(x) \neq \displaystyle \lim_{x \rightarrow a^{+}} f(x)\)

(b) \(\displaystyle \lim_{x \rightarrow a} f(x) \neq f(a)\) Geometrically, the graph of the function will exhibit a break at \(\mathrm{x}=\mathrm{a}\), if the function is discontinuous at \(\mathrm{x}=\mathrm{a}\). The graph as shown is discontinuous at \(\mathrm{x}=1,2\) and 3 .




4. THE INTERMEDIATE VALUE THEOREM :

Suppose \(\mathrm{f}(\mathrm{x})\) is continuous on an interval \(\mathrm{I}\) and \(\mathrm{a}\) and \(\mathrm{b}\) are any two points of I. Then if \(y_{0}\) is a number between \(f(a)\) and \(f(b)\), their exists a number \(c\) between \(a\) and \(b\) such that \(f(c)=y_{0}.\)

THE INTERMEDIATE VALUE THEOREM

Note that a function \(\mathrm{f}\) which is continuous in \([\mathrm{a}, \mathrm{b}]\) possesses the following property.

If \(\mathrm{f}(\mathrm{a}) \) & \(\mathrm{f}(\mathrm{b})\) posses opposite signs, then there exists atleast one solution of the equation \(\mathrm{f}(\mathrm{x})=0\) in the open interval \((\mathrm{a}, \mathrm{b}).\)



Comments

Popular posts from this blog

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of \(x\) such that \(F^{\prime}(x)\) \(=f(x)\) then the function \(F\) is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of \(\mathrm{f}(\mathrm{x})\) w.r.t. \(\mathrm{x}\) and is written symbolically as \(\displaystyle \int \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}\) \(=\mathrm{F}(\mathrm{x})+\mathrm{c} \Leftrightarrow \dfrac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{F}(\mathrm{x})+\mathrm{c}\}\) \(=\mathrm{f}(\mathrm{x})\) , where \(\mathrm{c}\) is called the constant of integration. Note : If \(\displaystyle \int f(x) d x\) \(=F(x)+c\) , then \(\displaystyle \int f(a x+b) d x\) \(=\dfrac{F(a x+b)}{a}+c, a \neq 0\) All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) \( \displaystyle \int(a x+b)^{n} d x\) \(=\dfrac{(a x+b)^{n+1}}{a(n+1)}+c ; n \neq-1\) (ii) \(\displaystyle \int \dfrac{d x}{a x+b}\) \(=\dfrac{1}{a} \ln|a x+b|+c\) (iii) \(\displaystyle \int e^{\mathrm{ax}+b} \mathrm{dx}\) \(=\dfrac{1}{...

Inverse Trigonometric function - Notes, Concept and All Important Formula

INVERSE TRIGONOMETRIC FUNCTION 1. DOMAIN, RANGE & GRAPH OFINVERSE TRIGONOMETRIC FUNCTIONS : (a) \(\mathrm{f}^{-1}:[-1,1] \rightarrow[-\pi / 2, \pi / 2]\) , \(\mathrm{f}^{-1}(\mathrm{x})=\sin ^{-1}(\mathrm{x})\) (b) \(\mathrm{f}^{-1}:[-1,1] \rightarrow[0, \pi]\) , \(\mathrm{f}^{-1}(\mathrm{x})=\cos ^{-1} \mathrm{x}\) (c) \(\mathrm{f}^{-1}: \mathrm{R} \rightarrow(-\pi / 2, \pi / 2)\) , \(\mathrm{f}^{-1}(\mathrm{x})=\tan ^{-1} \mathrm{x}\) (d) \(\mathrm{f}^{-1}: \mathrm{R} \rightarrow(0, \pi)\) \(\mathrm{f}^{-1}(\mathrm{x})=\cot ^{-1} \mathrm{x}\) (e) \(\mathrm{f}^{-1}:(-\infty,-1] \cup[1, \infty)\) \(\rightarrow[0, \pi / 2) \cup(\pi / 2, \pi]\) , \(\mathrm{f}^{-1}(\mathrm{x})=\sec ^{-1} \mathrm{x}\) (f) \(\mathrm{f}^{-1}:(-\infty,-1] \cup[1, \infty)\) \(\rightarrow[-\pi / 2,0) \cup(0, \pi / 2]\) \(\mathrm{f}^{-1}(\mathrm{x})=\operatorname{cosec}^{-1} \mathrm{x}\) All Chapter Notes, Concept and Important Formula 2. PROPERTIES OF INVERSE CIRCULAR FUNCTIONS: Property-1 : (i) \(y=\sin ...

3d Coordinate Geometry - Notes, Concept and All Important Formula

3D-COORDINATE GEOMETRY 1. DISTANCE FORMULA: The distance between two points \(A \left( x _{1}, y _{1}, z _{1}\right)\) and \(B \left( x _{2}, y _{2}, z _{2}\right)\) is given by \(A B=\sqrt{\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]}\) All Chapter Notes, Concept and Important Formula 2. SECTION FORMULAE : Let \(P \left( x _{1}, y _{1}, z _{1}\right)\) and \(Q \left( x _{2}, y _{2}, z _{2}\right)\) be two points and let \(R ( x , y , z )\) divide \(PQ\) in the ratio \(m _{1}: m _{2}\) . Then \(R\) is \((x, y, z)=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}, \frac{m_{1} z_{2}+m_{2} z_{1}}{m_{1}+m_{2}}\right)\) If \(\left( m _{1} / m _{2}\right)\) is positive, \(R\) divides \(PQ\) internally and if \(\left( m _{1} / m _{2}\right)\) is negative, then externally. Mid point of \(PQ\) is given by \(\left(\frac{ x _{1}+ x _{2}}{2}, \frac{ y _{1}+ y _{2}}{2}, \frac{ z _{1}+ z ...