Skip to main content

Continuity - Notes, Concept and All Important Formula

CONTINUITY

1. CONTINUOUS FUNCTIONS:

A function \(f(x)\) is said to be continuous at \(x=a\), if \(\displaystyle \lim _{x \rightarrow a} f(x)\) exists and is equal to \(f(\) a). Symbolically \(f(x)\) is continuous at \(x=a\).
If \(\displaystyle \lim _{h \rightarrow 0} f(a-h)=\displaystyle \lim _{h \rightarrow 0} f(a+h)=f(a)=\) finite and fixed quantity \((\mathrm{h}>0)\).
i.e. \(\left.\mathrm{LHL}\right|_{\mathrm{x}=\mathrm{a}}=\left.\mathrm{RHL}\right|_{\mathrm{x}=\mathrm{a}}=\) value of \(\left.f(\mathrm{x})\right|_{\mathrm{x}=\mathrm{a}}=\) finite and fixed quantity.
At isolated points functions are considered to be continuous.



2. CONTINUITY OF THE FUNCTION IN AN INTERVAL:

(a) A function is said to be continuous in \((a, b)\) if \(f\) is continuous at each & every point belonging to \((a, b)\).

(b) A function is said to be continuous in a closed interval \([a, b]\) if :

 \(\circ\,\, \mathrm{f}\) is continuous in the open interval \((a, b)\).

 \(\circ \,\, \mathrm{f}\) is right continuous at 'a' i.e. \(\displaystyle \lim_{x \rightarrow a^{+}} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{a})=\mathrm{a}\) finite quantity.

 \(\circ\,\, \mathrm{f}\) is left continuous at 'b' i.e. \(\displaystyle \lim_{x \rightarrow h^{-}} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{b})=\mathrm{a}\) finite quantity.

Note :

(i) All Polynomials, Trigonometrical functions, exponential & Logarithmic functions are continuous in their domains.

(ii) If \(\mathrm{f} \) & \(\mathrm{~g}\) are two functions that are continuous at \(\mathrm{x}=\mathrm{c}\) then the function defined by : \(\mathrm{F}_{1}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \pm \mathrm{g}(\mathrm{x}) ; \mathrm{F}_{2}(\mathrm{x})=\mathrm{K} \mathrm{f}(\mathrm{x}), \mathrm{K}\) any real number, \(\mathrm{F}_{3}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})\) are also continuous at \(\mathrm{x}=\mathrm{c}\). Further, if \(g(c)\) is not zero, then \(F_{4}(x)=\dfrac{f(x)}{g(x)}\) is also continuous at \(x=c\).

(iii) If \(f\) and \(g\) are continuous then fog and gof are also continuous.

(iv) If \(f\) and \(g\) are discontinuous at \(x=c\), then \(f+g, f-g, f . g\) may still be continuous.

(v) Sum or difference of a continuous and a discontinuous function is always discontinuous.




3. REASONS OF DISCONTINUITY:

REASONS OF DISCONTINUITY

(a) Limit does not exist i.e. \(\displaystyle \lim_{x \rightarrow a^{-}} f(x) \neq \displaystyle \lim_{x \rightarrow a^{+}} f(x)\)

(b) \(\displaystyle \lim_{x \rightarrow a} f(x) \neq f(a)\) Geometrically, the graph of the function will exhibit a break at \(\mathrm{x}=\mathrm{a}\), if the function is discontinuous at \(\mathrm{x}=\mathrm{a}\). The graph as shown is discontinuous at \(\mathrm{x}=1,2\) and 3 .




4. THE INTERMEDIATE VALUE THEOREM :

Suppose \(\mathrm{f}(\mathrm{x})\) is continuous on an interval \(\mathrm{I}\) and \(\mathrm{a}\) and \(\mathrm{b}\) are any two points of I. Then if \(y_{0}\) is a number between \(f(a)\) and \(f(b)\), their exists a number \(c\) between \(a\) and \(b\) such that \(f(c)=y_{0}.\)

THE INTERMEDIATE VALUE THEOREM

Note that a function \(\mathrm{f}\) which is continuous in \([\mathrm{a}, \mathrm{b}]\) possesses the following property.

If \(\mathrm{f}(\mathrm{a}) \) & \(\mathrm{f}(\mathrm{b})\) posses opposite signs, then there exists atleast one solution of the equation \(\mathrm{f}(\mathrm{x})=0\) in the open interval \((\mathrm{a}, \mathrm{b}).\)



Comments

Popular posts from this blog

Circle- Notes, Concept and All Important Formula

CIRCLE 1. DEFINITION : A circle is the locus of a point which moves in a plane in such a way that its distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is called the radius of the circle. All Chapter Notes, Concept and Important Formula 2. STANDARD EQUATIONS OF THE CIRCLE : (a) Central Form: If \((\mathrm{h}, \mathrm{k})\) is the centre and \(\mathrm{r}\) is the radius of the circle then its equation is \((\mathbf{x}-\mathbf{h})^{2}+(\mathbf{y}-\mathbf{k})^{2}=\mathbf{r}^{2}\) (b) General equation of circle : \(\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{2 g x}+\mathbf{2 f y}+\mathbf{c}=\mathbf{0}\) , where \(g, \mathrm{f}, c\) are constants and centre is \((-g,-f)\) i.e. \(\left(-\frac{\text { coefficient of } \mathrm{x}}{2},-\frac{\text { coefficient of } \mathrm{y}}{2}\right)\) and radius \(r=\sqrt{g^{2}+f^{2}-c}\) Note : The general quadratic equation in \(\mathrm{x}\) and \(\mathrm{y}\) , \(a x^{2}+b y^{2}+2 ...

Determinant - Notes, Concept and All Important Formula

DETERMINANT 1. MINORS : The minor of a given element of determinant is the determinant of the elements which remain after deleting the row & the column in which the given element stands. For example, the minor of \(a _{1}\) in \(\left|\begin{array}{lll} a _{1} & b _{1} & c _{1} \\ a _{2} & b _{2} & c _{2} \\ a _{3} & b _{3} & c _{3}\end{array}\right|\) is \(\left|\begin{array}{ll} b _{2} & c _{2} \\ b _{3} & c _{3}\end{array}\right| \&\) the minor of \(b_{2}\) is \(\quad\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{3} & c_{3}\end{array}\right|\) . Hence a determinant of order three will have " 9 minors". 2. COFACTORS : If \(M _{ ij }\) represents the minor of the element belonging to \(i ^{\text {th }}\) row and \(j ^{\text {th }}\) column then the cofactor of that element : \(C_{i j}=(-1)^{i+j} \cdot M_{i j}\) Important Note : Consider \(\Delta=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} ...

Trigonometry Ratios and Identities - Notes, Concept and All Important Formula

TRIGONOMETRIC RATIOS & IDENTITIES Table Of Contents 1. RELATION BETWEEN SYSTEM OF MEASUREMENT OF ANGLES : \(\dfrac{D}{90}=\dfrac{G}{100}=\dfrac{2 C}{\pi}\) 1 Radian \(=\dfrac{180}{\pi}\) degree \(\approx 57^{\circ} 17^{\prime} 15^{\prime \prime}\) (approximately) 1 degree \(=\dfrac{\pi}{180}\) radian \(\approx 0.0175\) radian All Chapter Notes, Concept and Important Formula 2. BASIC TRIGONOMETRIC IDENTITIES : (a) \(\sin ^{2} \theta+\cos ^{2} \theta=1\) or \(\sin ^{2} \theta=1-\cos ^{2} \theta\) or \(\cos ^{2} \theta=1-\sin ^{2} \theta\) (b) \(\sec ^{2} \theta-\tan ^{2} \theta=1\) or \(\sec ^{2} \theta=1+\tan ^{2} \theta\) or \(\tan ^{2} \theta=\sec ^{2} \theta-1\) (c) If \(\sec \theta+\tan \theta\) \(=\mathrm{k} \Rightarrow \sec \theta-\tan \theta\) \(=\dfrac{1}{\mathrm{k}} \Rightarrow 2 \sec \theta\) \(=\mathrm{k}+\dfrac{1}{\mathrm{k}}\) (d) \(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1\) or \(\operatorname{cosec}^{2} \theta=1+\cot ^{2} \th...