Skip to main content

What is the integration of log (1+x^2)?

Use integration by part to solve this question.

\[% \color{red}{\boxed{\color{blue}{\boxed{\color{black}{\text{ Using integration by parts, we have}\\\displaystyle \quad \int \ln \left(1+x^{2}\right) d x\\\displaystyle =x \ln \left(1+x^{2}\right)-\int x \frac{2 x}{1+x^{2}} d x \\\displaystyle =x \ln \left(1+x^{2}\right)-2 \int\left(1-\frac{1}{1+x^{2}}\right) d x \\\displaystyle =x \ln \left(1+x^{2}\right)-2 x+2 \tan ^{-1} x+C}}}}} \]

Comments

Popular posts from this blog

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of \(x\) such that \(F^{\prime}(x)\) \(=f(x)\) then the function \(F\) is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of \(\mathrm{f}(\mathrm{x})\) w.r.t. \(\mathrm{x}\) and is written symbolically as \(\displaystyle \int \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}\) \(=\mathrm{F}(\mathrm{x})+\mathrm{c} \Leftrightarrow \dfrac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{F}(\mathrm{x})+\mathrm{c}\}\) \(=\mathrm{f}(\mathrm{x})\) , where \(\mathrm{c}\) is called the constant of integration. Note : If \(\displaystyle \int f(x) d x\) \(=F(x)+c\) , then \(\displaystyle \int f(a x+b) d x\) \(=\dfrac{F(a x+b)}{a}+c, a \neq 0\) All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) \( \displaystyle \int(a x+b)^{n} d x\) \(=\dfrac{(a x+b)^{n+1}}{a(n+1)}+c ; n \neq-1\) (ii) \(\displaystyle \int \dfrac{d x}{a x+b}\) \(=\dfrac{1}{a} \ln|a x+b|+c\) (iii) \(\displaystyle \int e^{\mathrm{ax}+b} \mathrm{dx}\) \(=\dfrac{1}{...

Logarithm - Notes, Concept and All Important Formula

LOGARITHM LOGARITHM OF A NUMBER : The logarithm of the number \(\mathrm{N}\) to the base ' \(\mathrm{a}\) ' is the exponent indicating the power to which the base 'a' must be raised to obtain the number \(\mathrm{N}\) . This number is designated as \(\log _{\mathrm{a}} \mathrm{N}\) . (a) \(\log _{a} \mathrm{~N}=\mathrm{x}\) , read as \(\log\) of \(\mathrm{N}\) to the base \(\mathrm{a} \Leftrightarrow \mathrm{a}^{\mathrm{x}}=\mathrm{N}\) . If \(a=10\) then we write \(\log N\) or \(\log _{10} \mathrm{~N}\) and if \(\mathrm{a}=e\) we write \(\ln N\) or \(\log _{e} \mathrm{~N}\) (Natural log) (b) Necessary conditions : \(\mathrm{N}> \,\,0 ; \,\, \mathrm{a}> \,\,0 ; \,\, \mathrm{a} \neq 1\) (c) \(\log _{a} 1=0\) (d) \(\log _{a} a=1\) (e) \(\log _{1 / a} a=-1\) (f) \(\log _{a}(x . y)=\log _{a} x+\log _{a} y ; \,\, x, y> \,\,0\) (g) \(\log _{a}\left(\dfrac{\mathrm{x}}{y}\right)=\log _{\mathrm{a}} \mathrm{x}-\log _{\mathrm{a}} \mathrm{y} ; \,\, \mathrm{...

Sequence And Series - Notes, Concept and All Important Formula

SEQUENCE & SERIES 1. ARITHMETIC PROGRESSION (AP) : AP is sequence whose terms increase or decrease by a fixed number. This fixed number is called the common difference . If ‘a’ is the first term & ‘d’ is the common difference, then AP can be written as a, a + d, a + 2d, ..., a + (n – 1) d, ... (a) \(n^{\text {th }}\) term of this AP \(\boxed{T_{n}=a+(n-1) d}\) , where \(d=T_{n}-T_{n-1}\) (b) The sum of the first \(n\) terms : \(\boxed{S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{n}{2}[a+\ell]}\) ,  where \(\ell\) is the last term. (c) Also \(n ^{\text {th }}\) term \(\boxed{T _{ n }= S _{ n }- S _{ n -1}}\) Note: (i) Sum of first n terms of an A.P. is of the form \(A n^{2}+B n\) i.e. a quadratic expression in n, in such case the common difference is twice the coefficient of \(n ^{2}\) . i.e. 2A (ii) \(n ^{\text {th }}\) term of an A.P. is of the form \(An + B\) i.e. a linear expression in \(n\) , in such case the coefficient of \(n\) is the common difference of the ...