Skip to main content

What is the integration of log (1+x^2)?

Use integration by part to solve this question.

\[% \color{red}{\boxed{\color{blue}{\boxed{\color{black}{\text{ Using integration by parts, we have}\\\displaystyle \quad \int \ln \left(1+x^{2}\right) d x\\\displaystyle =x \ln \left(1+x^{2}\right)-\int x \frac{2 x}{1+x^{2}} d x \\\displaystyle =x \ln \left(1+x^{2}\right)-2 \int\left(1-\frac{1}{1+x^{2}}\right) d x \\\displaystyle =x \ln \left(1+x^{2}\right)-2 x+2 \tan ^{-1} x+C}}}}} \]

Comments

Popular posts from this blog

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of \(x\) such that \(F^{\prime}(x)\) \(=f(x)\) then the function \(F\) is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of \(\mathrm{f}(\mathrm{x})\) w.r.t. \(\mathrm{x}\) and is written symbolically as \(\displaystyle \int \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}\) \(=\mathrm{F}(\mathrm{x})+\mathrm{c} \Leftrightarrow \dfrac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{F}(\mathrm{x})+\mathrm{c}\}\) \(=\mathrm{f}(\mathrm{x})\) , where \(\mathrm{c}\) is called the constant of integration. Note : If \(\displaystyle \int f(x) d x\) \(=F(x)+c\) , then \(\displaystyle \int f(a x+b) d x\) \(=\dfrac{F(a x+b)}{a}+c, a \neq 0\) All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) \( \displaystyle \int(a x+b)^{n} d x\) \(=\dfrac{(a x+b)^{n+1}}{a(n+1)}+c ; n \neq-1\) (ii) \(\displaystyle \int \dfrac{d x}{a x+b}\) \(=\dfrac{1}{a} \ln|a x+b|+c\) (iii) \(\displaystyle \int e^{\mathrm{ax}+b} \mathrm{dx}\) \(=\dfrac{1}{...

Logarithm - Notes, Concept and All Important Formula

LOGARITHM LOGARITHM OF A NUMBER : The logarithm of the number \(\mathrm{N}\) to the base ' \(\mathrm{a}\) ' is the exponent indicating the power to which the base 'a' must be raised to obtain the number \(\mathrm{N}\) . This number is designated as \(\log _{\mathrm{a}} \mathrm{N}\) . (a) \(\log _{a} \mathrm{~N}=\mathrm{x}\) , read as \(\log\) of \(\mathrm{N}\) to the base \(\mathrm{a} \Leftrightarrow \mathrm{a}^{\mathrm{x}}=\mathrm{N}\) . If \(a=10\) then we write \(\log N\) or \(\log _{10} \mathrm{~N}\) and if \(\mathrm{a}=e\) we write \(\ln N\) or \(\log _{e} \mathrm{~N}\) (Natural log) (b) Necessary conditions : \(\mathrm{N}> \,\,0 ; \,\, \mathrm{a}> \,\,0 ; \,\, \mathrm{a} \neq 1\) (c) \(\log _{a} 1=0\) (d) \(\log _{a} a=1\) (e) \(\log _{1 / a} a=-1\) (f) \(\log _{a}(x . y)=\log _{a} x+\log _{a} y ; \,\, x, y> \,\,0\) (g) \(\log _{a}\left(\dfrac{\mathrm{x}}{y}\right)=\log _{\mathrm{a}} \mathrm{x}-\log _{\mathrm{a}} \mathrm{y} ; \,\, \mathrm{...

Inverse Trigonometric function - Notes, Concept and All Important Formula

INVERSE TRIGONOMETRIC FUNCTION 1. DOMAIN, RANGE & GRAPH OFINVERSE TRIGONOMETRIC FUNCTIONS : (a) \(\mathrm{f}^{-1}:[-1,1] \rightarrow[-\pi / 2, \pi / 2]\) , \(\mathrm{f}^{-1}(\mathrm{x})=\sin ^{-1}(\mathrm{x})\) (b) \(\mathrm{f}^{-1}:[-1,1] \rightarrow[0, \pi]\) , \(\mathrm{f}^{-1}(\mathrm{x})=\cos ^{-1} \mathrm{x}\) (c) \(\mathrm{f}^{-1}: \mathrm{R} \rightarrow(-\pi / 2, \pi / 2)\) , \(\mathrm{f}^{-1}(\mathrm{x})=\tan ^{-1} \mathrm{x}\) (d) \(\mathrm{f}^{-1}: \mathrm{R} \rightarrow(0, \pi)\) \(\mathrm{f}^{-1}(\mathrm{x})=\cot ^{-1} \mathrm{x}\) (e) \(\mathrm{f}^{-1}:(-\infty,-1] \cup[1, \infty)\) \(\rightarrow[0, \pi / 2) \cup(\pi / 2, \pi]\) , \(\mathrm{f}^{-1}(\mathrm{x})=\sec ^{-1} \mathrm{x}\) (f) \(\mathrm{f}^{-1}:(-\infty,-1] \cup[1, \infty)\) \(\rightarrow[-\pi / 2,0) \cup(0, \pi / 2]\) \(\mathrm{f}^{-1}(\mathrm{x})=\operatorname{cosec}^{-1} \mathrm{x}\) All Chapter Notes, Concept and Important Formula 2. PROPERTIES OF INVERSE CIRCULAR FUNCTIONS: Property-1 : (i) \(y=\sin ...