Skip to main content

What is the integration of log (1+x^2)?

Use integration by part to solve this question.

\[% \color{red}{\boxed{\color{blue}{\boxed{\color{black}{\text{ Using integration by parts, we have}\\\displaystyle \quad \int \ln \left(1+x^{2}\right) d x\\\displaystyle =x \ln \left(1+x^{2}\right)-\int x \frac{2 x}{1+x^{2}} d x \\\displaystyle =x \ln \left(1+x^{2}\right)-2 \int\left(1-\frac{1}{1+x^{2}}\right) d x \\\displaystyle =x \ln \left(1+x^{2}\right)-2 x+2 \tan ^{-1} x+C}}}}} \]

Comments

Popular posts from this blog

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of \(x\) such that \(F^{\prime}(x)\) \(=f(x)\) then the function \(F\) is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of \(\mathrm{f}(\mathrm{x})\) w.r.t. \(\mathrm{x}\) and is written symbolically as \(\displaystyle \int \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}\) \(=\mathrm{F}(\mathrm{x})+\mathrm{c} \Leftrightarrow \dfrac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{F}(\mathrm{x})+\mathrm{c}\}\) \(=\mathrm{f}(\mathrm{x})\) , where \(\mathrm{c}\) is called the constant of integration. Note : If \(\displaystyle \int f(x) d x\) \(=F(x)+c\) , then \(\displaystyle \int f(a x+b) d x\) \(=\dfrac{F(a x+b)}{a}+c, a \neq 0\) All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) \( \displaystyle \int(a x+b)^{n} d x\) \(=\dfrac{(a x+b)^{n+1}}{a(n+1)}+c ; n \neq-1\) (ii) \(\displaystyle \int \dfrac{d x}{a x+b}\) \(=\dfrac{1}{a} \ln|a x+b|+c\) (iii) \(\displaystyle \int e^{\mathrm{ax}+b} \mathrm{dx}\) \(=\dfrac{1}{...

Circle- Notes, Concept and All Important Formula

CIRCLE 1. DEFINITION : A circle is the locus of a point which moves in a plane in such a way that its distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is called the radius of the circle. All Chapter Notes, Concept and Important Formula 2. STANDARD EQUATIONS OF THE CIRCLE : (a) Central Form: If \((\mathrm{h}, \mathrm{k})\) is the centre and \(\mathrm{r}\) is the radius of the circle then its equation is \((\mathbf{x}-\mathbf{h})^{2}+(\mathbf{y}-\mathbf{k})^{2}=\mathbf{r}^{2}\) (b) General equation of circle : \(\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{2 g x}+\mathbf{2 f y}+\mathbf{c}=\mathbf{0}\) , where \(g, \mathrm{f}, c\) are constants and centre is \((-g,-f)\) i.e. \(\left(-\frac{\text { coefficient of } \mathrm{x}}{2},-\frac{\text { coefficient of } \mathrm{y}}{2}\right)\) and radius \(r=\sqrt{g^{2}+f^{2}-c}\) Note : The general quadratic equation in \(\mathrm{x}\) and \(\mathrm{y}\) , \(a x^{2}+b y^{2}+2 ...

What are Function and how its work on Calculus?

What are Function ? Table Of Contents Introduction with beautiful example Here's a plant, and what you see here is it's  shadow. Can you list the things that the length of the shadow is dependent on. One, it's dependent on the position of the source of light. Anything else that you can think of. If the height of the plant grows then the shadows length will also change, right. So the length of the shadow is dependent on the position of the source of light, and the height of the plant too. So we can say that the length of the shadow is a function of the following two things. The output is dependent on these two things, which could be considered as the inputs. That's a very simple way to understand functions. Could you think of more inputs, this output is dependent on here, tell us yours answers in the comment section below.  How do Function work in calculus ? That's what we'll see in this topics. Previously, we saw an idea to find the instant...