Skip to main content

What is the integration of log (1+x^2)?

Use integration by part to solve this question.

\[% \color{red}{\boxed{\color{blue}{\boxed{\color{black}{\text{ Using integration by parts, we have}\\\displaystyle \quad \int \ln \left(1+x^{2}\right) d x\\\displaystyle =x \ln \left(1+x^{2}\right)-\int x \frac{2 x}{1+x^{2}} d x \\\displaystyle =x \ln \left(1+x^{2}\right)-2 \int\left(1-\frac{1}{1+x^{2}}\right) d x \\\displaystyle =x \ln \left(1+x^{2}\right)-2 x+2 \tan ^{-1} x+C}}}}} \]

Comments

Popular posts from this blog

Parabola - Notes, Concept and All Important Formula

PARABOLA 1. CONIC SECTIONS : A conic section, or conic is the locus of a point which moves in a plane so that its distance from a fixed point is in a constant ratio to its perpendicular distance from a fixed straight line. (a) The fixed point is called the FOCUS. (b) The fixed straight line is called the DIRECTRIX. (c) The constant ratio is called the ECCENTRICITY denoted by e. (d) The line passing through the focus & perpendicular to the directrix is called the AXIS. (e) A point of intersection of a conic with its axis is called a VERTEX. All Chapter Notes, Concept and Important Formula 2. GENERAL EQUATION OF A CONIC : FOCAL DIRECTRIX PROPERTY: The general equation of a conic with focus \((p, q) \) & directrix \(\mathrm{lx}+\mathrm{my}+\mathrm{n}=0\)   is :  \(\left(1^{2}+\mathrm{m}^{2}\right)\left[(x-\mathrm{p})^{2}+(\mathrm{y}-\mathrm{q})^{2}\right] \) \(=e^{2}(\mathrm{l} \mathrm{x}+\mathrm{m} y+\mathrm{n})^{2}  \) \(\equiv \mathrm{ax}^{2}+2 \mathrm{~h} ...

Straight Line - Notes, Concept and All Important Formula

STRAIGHT LINE Table Of Contents 1. RELATION BETWEEN CARTESIAN CO-ORDINATE & POLAR CO-ORDINATE SYSTEM If \((x, y)\) are Cartesian co-ordinates of a point \(P\) , then : \(x=r \cos \theta\) , \(y=r \sin \theta\) and \(r=\sqrt{x^{2}+y^{2}}, \quad \theta=\tan ^{-1}\left(\dfrac{y}{x}\right)\) All Chapter Notes, Concept and Important Formula 2. DISTANCE FORMULA AND ITS APPLICATIONS : If \(\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) and \(\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\) are two points, then \(\mathbf{A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}}\) Note : (i) Three given points \(A, B\) and \(C\) are collinear, when sum of any two distances out of \(\mathrm{AB}, \mathrm{BC}, \mathrm{CA}\) is equal to the remaining third otherwise the points will be the vertices of triangle. (ii) Let \(A, B, C \& D\) be the four given points in a plane. Then the quadrilateral will be: (a) Square if \(A B=B C=C D=D...

Trigonometry Ratios and Identities - Notes, Concept and All Important Formula

TRIGONOMETRIC RATIOS & IDENTITIES Table Of Contents 1. RELATION BETWEEN SYSTEM OF MEASUREMENT OF ANGLES : \(\dfrac{D}{90}=\dfrac{G}{100}=\dfrac{2 C}{\pi}\) 1 Radian \(=\dfrac{180}{\pi}\) degree \(\approx 57^{\circ} 17^{\prime} 15^{\prime \prime}\) (approximately) 1 degree \(=\dfrac{\pi}{180}\) radian \(\approx 0.0175\) radian All Chapter Notes, Concept and Important Formula 2. BASIC TRIGONOMETRIC IDENTITIES : (a) \(\sin ^{2} \theta+\cos ^{2} \theta=1\) or \(\sin ^{2} \theta=1-\cos ^{2} \theta\) or \(\cos ^{2} \theta=1-\sin ^{2} \theta\) (b) \(\sec ^{2} \theta-\tan ^{2} \theta=1\) or \(\sec ^{2} \theta=1+\tan ^{2} \theta\) or \(\tan ^{2} \theta=\sec ^{2} \theta-1\) (c) If \(\sec \theta+\tan \theta\) \(=\mathrm{k} \Rightarrow \sec \theta-\tan \theta\) \(=\dfrac{1}{\mathrm{k}} \Rightarrow 2 \sec \theta\) \(=\mathrm{k}+\dfrac{1}{\mathrm{k}}\) (d) \(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1\) or \(\operatorname{cosec}^{2} \theta=1+\cot ^{2} \th...