FUNCTION
1. DEFINITION :
If to every value (considered as real unless other-wise stated) of a variable \(\mathrm{x}\), which belongs to a set \(\mathrm{A}\), there corresponds one and only one finite value of the quantity \(y\) which belong to set \(B\), then \(y\) is said to be a function of \(x\) and written as \(f: A \rightarrow B, y=f(x), x\) is called argument or independent variable and \(y\) is called dependent variable.
Pictorially: \( \underset{\text { input }}{\stackrel{\mathrm{x}}{\longrightarrow}}\boxed{\mathrm{f}}\,\, \underset{\text { output }}{\stackrel{\mathrm{f(x)=y}}{\longrightarrow}}\)
Every function \(\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}\) satisfies the following conditions.
(ii) \(\forall \,\, a \in A \,\, \exists\,\, b \in B\) such that \((a, b) \in f\) and
(iii) If \((a, b) \in f \) & \((a, c) \in f \Rightarrow b=c\)
2. DOMAIN, CO-DOMAIN & RANGE OF A FUNCTION:
Let \(f: A \rightarrow B\), then the set \(A\) is known as the domain of 'f' & the set \(B\) is known as co-domain of 'f'. The set of all f images of elements of \(A\) is known as the range of ' \(f^{\prime}\). Thus
- Domain of \(\mathrm{f}=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{A},(\mathrm{x}, \mathrm{f}(\mathrm{x})) \in \mathrm{f}\}\)
- Range of \(\mathrm{f}=\{\mathrm{f}(\mathrm{x}) \mid \mathrm{x} \in \mathrm{A}, \mathrm{f}(\mathrm{x}) \in \mathrm{B}\}\)
- Range is a subset of co-domain.
3. IMPORTANT TYPES OF FUNCTION :
(a) Polynomial function:
If a function 'f' is called by \(f(x)\)\(=a_{0} x^{n}\)\(+a_{1} x^{n-1}\)\(+a_{2} x^{n-2}+\ldots \)\(\ldots\)\(+a_{n-1} x\)\(+a_{n}\) where \(n\) is a non negative integer and \(a_{0}, a_{1}, a_{2}, \ldots . a_{n}\) are real numbers and \(\mathrm{a}_{0} \neq 0\), then \(\mathrm{f}\) is called a polynomial function of degree \(\mathrm{n}\).
(i) A polynomial of degree one with no constant term is called an odd linear function. i.e. \(\mathrm{f}(\mathrm{x})=\mathrm{ax}, \mathrm{a} \neq 0.\)
(ii) There are four polynomial functions, satisfying the relation ; \(\mathrm{f}(\mathrm{x}) \cdot \mathrm{f}(1 / \mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{f}(1 / \mathrm{x})\). They are:
- \(\mathrm{f}(\mathrm{x})=\mathrm{x}^{\mathrm{n}}+1, \mathrm{n} \in \mathbb{N}\)
- \(\mathrm{f}(\mathrm{x})=1-\mathrm{x}^{\mathrm{n}}, \mathrm{n} \in \mathbb{N}\)
- \(\mathrm{f}(\mathrm{x})=0\)
- \(f(x)=2\)
(iv) Range of odd degree polynomial is \(\mathrm{R}\) whereas range of an even degree polynomial is never \(\mathrm{R}\).
(b) Algebraic function :
A function 'f' is called an algebraic function if it can be constructed using algebraic operations (such as addition, subtraction, multiplication, division, and taking radicals) starting with polynomials.
(c) Rational function :
Domain : \(\mathrm{R}-\{\mathrm{x} \mid \mathrm{h}(\mathrm{x})=0\}\)
Any rational function is automatically an algebraic function.
(d) Exponential and Logarithmic Function:
A function \(\mathrm{f}(\mathrm{x})=\mathrm{a}^{\mathrm{x}}(\mathrm{a}>0), \mathrm{a} \neq 1, \mathrm{x} \in \mathrm{R}\) is called an exponential function. The inverse of the exponential function is called the logarithmic function, i.e. \(g(x)=\log _{a} x\)
Note that \(\mathrm{f}(\mathrm{x}) \) & \( \mathrm{~g}(\mathrm{x})\) are inverse of each other \(\&\) their graphs are as shown. (Functions are mirror image of each other about the line \(y=x)\)
Domain of \(\log _{a} x\) is \(R^{+} \quad\) Range \(R\)
(e) Absolute value function:
It is defined as : \(y=|x|\)
\(=\left\{\begin{array}{rll}\mathrm{x} & \text { if } & \mathrm{x} \geq 0 \\ -\mathrm{x} & \text { if } & \mathrm{x}<0\end{array}\right.\)
Domain : R \(\quad\) Range \(:[0, \infty)\)
Note: \( f(x)=\dfrac{1}{|x|} \quad\) Domain : \(R-\{0\}\) Range : \(\mathrm{R}^{+}\)
Properties of modulus function:
For any \(\mathrm{x}, \mathrm{y}, \mathrm{a} \in \mathrm{R}\)
(iii) \(|x y|=|x||y|\) (iv) \(\left|\dfrac{\mathrm{x}}{\mathrm{y}}\right|=\dfrac{|\mathrm{x}|}{|\mathrm{y}|} ; \mathrm{y} \neq 0\)
(v) \(|x|=a \Rightarrow x=\pm\) a, \(a>0\) (vi) \(\sqrt{x^{2}}=|x|\)
(vii) \(|x| \geq a \Rightarrow x \geq a\) or \(x \leq-a\). where a is positive.
(viii) \(|x| \leq a \Rightarrow x \in[-a, a]\). where a is positive
(ix) \(|x|>|y| \Rightarrow x^{2}>y^{2}\)
(x) \(|| x|-| y|| \leq|x+y| \leq|x|+|y|\)
(b) \(|x|+|y|=|x-y| \Rightarrow x y \leq 0\)
(f) Signum function :
Signum function \(y=\operatorname{sgn}(x)\) is defined as follows
\(y=\left\{\begin{array}{l}\frac{|x|}{x}, x \neq 0 \\ 0, x=0\end{array}=\left\{\begin{array}{ll}1 & \text { for } x>0 \\ 0 & \text { for } x=0 \\ -1 & \text { for } x<0\end{array}\right.\right.\)
Range: \(\{-1,0,1\}\)
(g) Greatest integer or step up function:
The function \(y=f(x)=[x]\) is called the greatest integer function where \([\mathrm{x}]\) denotes the greatest integer less than or equal to \(x\). Note that for :
\(\begin{array}{|c|c|} \hline x & [x] \\ \hline [–2,–1)& –2 \\ \hline [–1,0)& –1 \\ \hline [0,1)& 0 \\ \hline [1,2)& 1 \\ \hline \end{array}\)
Range : I
Properties of greatest integer function:
(i) \(x-1<[x] \leq x<[x]+1,0 \leq x-[x]<1\)
(ii) \([x+y]=\left\{\begin{array}{ll}{[x]+[y]}, & \{x\}+\{y\} \in[0,1) \\ {[x]+[y]+1,} & \{x\}+\{y\} \in[1,2)\end{array}\right.\)
(iii) \([x]+[-x]=\left\{\begin{array}{ll}0, & x \in I \\ -1, & x \notin I\end{array}\right.\)
(iv) \(\{x\}+\{-x\}=\left\{\begin{array}{ll}0, & x \in I \\ 1, & x \notin I\end{array}\right.\)
Note: \( f(x)=\frac{1}{[x]}\)
Domain : \(\mathrm{R}-[0,1) \quad\) Range : \(\left\{\mathrm{x} \mid \mathrm{x}=\frac{1}{\mathrm{n}}, \mathrm{n} \in \mathrm{I}-\{0\}\right\}\)
(h) Fractional part function:
It is defined as: \(g(x)=\{x\}=x-[x]\) e.g.
\(\begin{array}{|c|c|}\hline \mathrm{x} & \{\mathrm{x}\} \\\hline [-2,-1) & \mathrm{x}+2 \\\hline [-1,0) & \mathrm{x}+1 \\\hline [0,1) & \mathrm{x}\\\hline [1,2) & \mathrm{x}-1 \\\hline\end{array}\)
\(\begin{array}{lll}\mathbf{Domain :} \mathrm{R} & \mathbf { Range : }[0,1) & \mathbf{ Period : } 1\end{array}\)
Note: \( f(x)=\frac{1}{\{x\}} \quad\) Domain : \(R-I \quad\) Range: \((1, \infty)\)
(i) Identity function:
(j) Constant function:
Domain : \(\mathrm{R} \quad\) Range: \(\{\mathrm{c}\}\)
(k) Trigonometric functions:
Domain : \(\mathrm{R} \quad\) Range: \([-1,1]\), period \(2 \pi\)
Domain : R \(\quad\) Range: \([-1,1]\), period \(2 \pi\)
Domain : \(\mathrm{R}-\{\mathrm{x} \mid \mathrm{x}=\mathrm{n} \pi, \mathrm{n} \in \mathrm{I}\)
Range : \(\mathrm{R}-(-1,1)\), period \(2 \pi\)
Domain : \(\mathrm{R}-\{\mathrm{x} \mid \mathrm{x}=(2 \mathrm{n}+1) \pi / 2: \mathrm{n} \in \mathrm{I}\}\)
Range : \(\mathrm{R}-(-1,1)\), period \(2 \pi\)
Domain : \(\mathrm{R}-\{\mathrm{x} \mid \mathrm{x}=\mathrm{n} \pi, \mathrm{n} \in \mathrm{I}\}\)
Range : R, period \(\pi\)
(l) Inverse Trigonometric function:
\(\scriptsize\mathbf{{\begin{array}{|c|c|c|c|} \hline (i) & \mathrm{f}(\mathrm{x})=\sin ^{-1} \mathrm{x} & Domain :[-1,1] & Range :\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ \hline (ii) & f(x)=\cos ^{-1} x & Domain :[-1,1] & Range :[0, \pi]\\ \hline (iii) & f(x)=\tan ^{-1} x & Domain : R & Range :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ \hline (iv) & f(x)=\cot ^{-1} x & Domain : R & Range :(0, \pi)\\ \hline (v)& \mathrm{f}(\mathrm{x})=\operatorname{cosec}^{-1} \mathrm{x} & Domain : \mathrm{R}-(-1,1) & Range : \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}\\ \hline (vi) & \mathrm{f}(\mathrm{x})=\sec ^{-1} \mathrm{x} & Domain : \mathrm{R}-(-1,1) & Range :[0, \pi]-\left\{\frac{\pi}{2}\right\} \\ \hline \end{array}}}\)
4. EQUAL OR IDENTICAL FUNCTION :
Two function \(\mathrm{f} \) & \( \mathrm{~g}\) are said to be equal if :
(b) The range of \(\mathrm{f}=\) range of \(\mathrm{g}\) and
(c) \(\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})\), for every \(\mathrm{x}\) belonging to their common domain (i.e. should have the same graph)
5. ALGEBRAIC OPERATIONS ON FUNCTIONS :
If \(\mathrm{f} \) & \(\mathrm{~g}\) are real valued functions of \(\mathrm{x}\) with domain set \(\mathrm{A}, \mathrm{B}\) respectively, \(\mathrm{f}+\mathrm{g}, \mathrm{f}-\mathrm{g},(\mathrm{f} \cdot \mathrm{g}) \) & \((\mathrm{f} / \mathrm{g})\) as follows:
(b) \((f . g)(x)=f(x) \cdot g(x)\), domain is \(A \cap B\)
(c) \(\left(\dfrac{\mathrm{f}}{\mathrm{g}}\right)(\mathrm{x})=\dfrac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}\), domain \(\mathrm{A} \cap \mathrm{B}-\{\mathrm{x} \mid \mathrm{g}(\mathrm{x})=0\}\)
6. CLASSIFICATION OF FUNCTIONS :
(a) One-One function (Injective mapping):
A function \(\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}\) is said to be a one-one function or injective mapping if different elements of A have different \(f\) images in \(B\). Thus for \(x_{1}, x_{2} \in A \& f\left(x_{1}\right), f\left(x_{2}\right) \in B, f\left(x_{1}\right)=f\left(x_{2}\right)\)\(\Leftrightarrow \mathrm{x}_{1}=\mathrm{x}_{2}\) or \(\mathrm{x}_{1} \neq \mathrm{x}_{2} \Leftrightarrow \mathrm{f}\left(\mathrm{x}_{1}\right) \neq \mathrm{f}\left(\mathrm{x}_{2}\right)\)
(i) Any continuous function which is entirely increasing or decreasing in whole domain is one-one.
(ii) If a function is one-one, any line parallel to \(\mathrm{x}\) -axis cuts the graph of the function at atmost one point
(iii) Non-monotonic function can also be injective.
(b) Many-one function:
A function \(\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}\) is said to be a many one function if two or more elements of A have the same f image in B. Thus \(\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}\) is many one if \(\exists \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{A}, \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)\) but \(x_{1} \neq x_{2}\)
Note : If a continuous function has local maximum or local minimum, then \(\mathrm{f}(\mathrm{x})\) is many-one because atleast one line parallel to \(x\) -axis will intersect the graph of function atleast twice.
Total number of functions= number of one-one functions + number of many-one function
(c) Onto function (Surjective) :
If range \(=\) co-domain, then \(\mathrm{f}(\mathrm{x})\) is onto.
(d) Into function :
If \(f: A \rightarrow B\) is such that there exists atleast one element in co-domain which is not the image of any element in domain, then \(\mathrm{f}(\mathrm{x})\) is into.
Note :
(ii) If a set A contains \(\mathrm{n}\) distinct elements then the number of different functions defined from \(\mathrm{A} \rightarrow \mathrm{A}\) is \(\mathrm{n}^{\mathrm{n}} \&\) out of it \(\mathrm{n} !\) are one one and rest are many one.
(a) Of even degree, then it will neither be injective nor surjective.
(b) Of odd degree, then it will always be surjective, no general comment can be given on its injectivity.
7. COMPOSITE OF UNIFORMLY & NON-UNIFORMLY DEFINED FUNCTION :
Let \(\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B} \) & \( \mathrm{~g}: \mathrm{B} \rightarrow \mathrm{C}\) be two functions. Then the function gof : \(\mathrm{A} \rightarrow \mathrm{C}\) defined by (gof ) \((\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x})) \,\, \forall \,\, \mathrm{x} \in \mathrm{A}\) is called the composite of the two functions \(f \) & \(g\).
\( \text{x}\rightarrow \boxed{\mathrm{f}}\rightarrow \boxed{\mathrm{g}}\rightarrow \mathrm{g(f(x))}\)
Properties of composite functions:
(b) The composite of functions is associative i.e. if \(f, g, h\) are three functions such that fo(goh) & (fog)oh are defined, then \(\mathrm{fo}(\mathrm{goh})=(\) fog \() \mathrm{oh}\)
(c) The composite of two bijections is a bijection i.e. if \(f \) & \(g\) are two bijections such that gof is defined, then gof is also a bijection.
(d) If gof is one-one function then \(\mathrm{f}\) is one-one but \(g\) may not be one-one.
8. HOMOGENEOUS FUNCTIONS :
A function is said to be homogeneous with respect to any set of variables when each of its terms is of the same degree with respect to those variables.
For examples \(5 x^{2}+3 y^{2}-x y\) is homogenous in \(x \) & \(y\). Symbolically if, \(\mathrm{f}(\mathrm{tx}, \mathrm{ty})=\mathrm{t}^{\mathrm{n}} \mathrm{f}(\mathrm{x}, \mathrm{y})\), then \(\mathrm{f}(\mathrm{x}, \mathrm{y})\) is homogeneous function of degree \(\mathrm{n}\).
9. BOUNDED FUNCTION :
A function is said to be bounded if \(\mathrm{I} \mathrm{f}(\mathrm{x}) \mid \leq \mathrm{M}\), where \(\mathrm{M}\) is a finite quantity.
10. IMPLICIT & EXPLICIT FUNCTION :
A function defined by an equation not solved for the dependent variable is called an implicit function. e.g. the equation \(x^{3}+y^{3}=1\) defines \(y\) as an implicit function of \(x\). If \(y\) has been expressed in terms of \(x\) alone then it is called an Explicit function.
11. INVERSE OF A FUNCTION :
Let \(\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}\) be a one-one & onto function, then their exists a unique function \(g: B \rightarrow A\) such that \(f(x)=y \Leftrightarrow g(y)=x\) \(\forall \, x \in A \,\, \& \,\, y \in B\). Then \(g\) is said to be inverse of \(f\). Thus \(\left.g=\mathrm{f}^{-1}: \mathrm{B} \rightarrow \mathrm{A}=\{(\mathrm{f}(\mathrm{x}), \mathrm{x})) \mid(\mathrm{x}, \mathrm{f}(\mathrm{x})) \in \mathrm{f}\right\}\)
Properties of inverse function:
(b) If \(\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}\) is a bijection & \( \mathrm{~g}: \mathrm{B} \rightarrow \mathrm{A}\) is the inverse of \(\mathrm{f}\), then fog \(=I_{B}\) and gof \(=I_{A}\), where \(I_{A} \) & \(I_{B}\) are identity functions on the sets \(A \) & \(B\) respectively. If fof \(=I\), then \(f\) is inverse of itself.
(c) The inverse of a bijection is also a bijection.
(d) If \(f \) & \( g\) are two bijections \(f: A \rightarrow B, g: B \rightarrow C \) & gof exist, then the inverse of gof also exists and \((\mathrm{gof})^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}\).
(e) Since \(f(a)=b\) if and only if \(f^{-1}(b)=a\), the point \((a, b)\) is on the graph of 'f' if and only if the point \((b, a)\) is on the graph of \(f^{-1}\). But we get the point \((b, a)\) from \((a, b)\) by reflecting about the line \(y=x\). In general \(\mathrm{f}(\mathrm{x})=\mathrm{x} \Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}^{-1}(\mathrm{x})\).
12. ODD & EVEN FUNCTIONS :
\(\mathrm{f}(-\mathrm{x})=\mathrm{f}(\mathrm{x})\), then it is an even function and if
\(\mathrm{f}(-\mathrm{x})=-\mathrm{f}(\mathrm{x})\), then it is an odd function
(i) A function may neither be odd nor even.
(ii) Inverse of an even function is not defined, as it is many-one function.
(iii) Every even function is symmetric about the y-axis & every odd function is symmetric about the origin.
(iv) Every function which has '-x' in it's domain whenever 'x' is in it's domain, can be expressed as the sum of an even & an odd function.
e.g. \(f(x)=\underbrace{\dfrac{f(x)+f(-x)}{2}}_{\text{Even}}+\underbrace{\dfrac{f(x)-f(-x)}{2}}_{\text{Odd}} \)
(v) The only function which is defined on the entire number line & even and odd at the same time is \(f(x)=0\).
(vi) If \(\mathrm{f}(\mathrm{x})\) and \(g(\mathrm{x})\) both are even or both are odd then the function \(\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})\). will be even but if any one of them is odd & other is even, then \(\mathrm{f} . \mathrm{g}\) will be odd.
13. PERIODIC FUNCTION :
14. GENERAL :
(a) f(xy) = f(x) + f(y) \(\Rightarrow\) f(x) = k.ln x
(b) f(xy) = f(x) . f(y) \(\Rightarrow\) f(x) = \(x^n\), n \(\in\) R or f(x) = 0.
(c) f(x + y) = f(x) . f(y) \(\Rightarrow\) f(x) = \(a^{kx}\) or f(x) = 0.
(d) f(x + y) = f(x) + f(y) \(\Rightarrow\) f(x) = kx, where k is a constant.
15. SOME BASIC FUNCTION & THEIR GRAPH:
(a)
y = \(x^{2n}\), where n \(\in\) N(b)
y = \(x^{2n+1}\), where n \(\in\) N(c)
y = \(\dfrac{1}{x^{2n-1}}\), where n \(\in\) N
(d)
y = \(\dfrac{1}{x^{2n}}\), where n \(\in\) N(e)
y = \(x^{\frac{1}{x^{2n}}}\), where n \(\in\) N(f)
y = \(x^{\frac{1}{x^{2n+1}}}\), where n \(\in\) NNote:
y = \(x^{\frac{2}{3}}\)(g) y = \(\log_ax\)
(h) y = \(a^x\)
(i) Trigonometric functions :
y = sinx
y = cosx
y = tanx
y = cosecx
y = secx
y = cotx
where D = b\(^2\)– 4ac
16. TRANSFORMATION OF GRAPH :
if k > 0 then shift graph of ƒ(x) upward through k
if k < 0 then shift graph of ƒ(x) downward through k
Examples :
if k < 0 then shift graph of ƒ(x) through k towards right.
if 0 < k < 1 then shrink graph of ƒ(x), k times along y-axis
Examples :
if 0 < k < 1 then stretch graph of ƒ(x), ‘k’ times along x-axis
Examples :
Take mirror image of the curve y = ƒ(x) in y-axis as plane mirror
Example :
Example :
ƒ(x) which lies below x-axis.
Examples :
x ≥ 0 about y-axis.
take mirror image {in x axis} of remaining portion of graph
Examples :
Comments
Post a Comment