Processing math: 100%
Skip to main content

Trigonometry Ratios and Identities - Notes, Concept and All Important Formula

TRIGONOMETRIC RATIOS & IDENTITIES

1. RELATION BETWEEN SYSTEM OF MEASUREMENT OF ANGLES :

D90=G100=2Cπ

1 Radian =180π degree 571715 (approximately)

1 degree =π180 radian 0.0175 radian




2. BASIC TRIGONOMETRIC IDENTITIES :

(a) sin2θ+cos2θ=1 or sin2θ=1cos2θ or cos2θ=1sin2θ
(b) sec2θtan2θ=1 or sec2θ=1+tan2θ or tan2θ=sec2θ1
(c) If secθ+tanθ=ksecθtanθ=1k2secθ=k+1k
(d) cosec2θcot2θ=1 or cosec2θ=1+cot2θ or cot2θ=cosec2θ1
(e) If cosecθ+cotθ=kcosecθcotθ=1k2cosecθ=k+1k



3. SIGNS OF TRIGONOMETRIC FUNCTIONS IN DIFFERENT QUADRANTS:

SIGNS OF TRIGONOMETRIC FUNCTIONS IN DIFFERENT QUADRANTS



4. TRIGONOMETRIC FUNCTIONS OF ALLIED ANGLES :

(a) sin(2nπ+θ)=sinθ,cos(2nπ+θ)=cosθ, where nI

(b) 
  • sin(θ)=sinθ
  • cos(θ)=cosθ
  • sin(90θ)=cosθ
  • cos(90θ)=sinθ
  • sin(90+θ)=cosθ
  • cos(90+θ)=sinθ
  • sin(180θ)=sinθ
  • cos(180θ)=cosθ
  • sin(180+θ)=sinθ
  • cos(180+θ)=cosθ
  • sin(270θ)=cosθ
  • cos(270θ)=sinθ
  • sin(270+θ)=cosθ
  • cos(270+θ)=sinθ
Note :
(i)
sinnπ=0;cosnπ=(1)n;tannπ=0, where nI
(ii) sin(2n+1)π2=(1)n;cos(2n+1)π2=0, where nI



5. IMPORTANT TRIGONOMETRIC FORMULAE :

(i) sin(A+B)=sinAcosB+cosAsinB.

(ii) sin(AB)=sinAcosBcosAsinB.

(iii) cos(A+B)=cosAcosBsinAsinB

(iv) cos(AB)=cosAcosB+sinAsinB

(v) tan(A+B)=tanA+tanB1tanAtanB

(vi) tan(AB)=tanAtanB1+tanAtanB

(vii) cot(A+B)=cotBcotA1cotB+cotA

(viii) cot(AB)=cotBcotA+1cotBcotA

(ix) 2sinAcosB=sin(A+B)+sin(AB).

(x) 2cosAsinB=sin(A+B)sin(AB).

(xi) 2cosAcosB=cos(A+B)+cos(AB)

(xii) 2sinAsinB=cos(AB)cos(A+B)

(xiii) sinC+sinD=2sin(C+D2)cos(CD2)

(xiv) sinCsinD=2cos(C+D2)sin(CD2)

(xv) cosC+cosD=2cos(C+D2)cos(CD2)

(xvi) cosCcosD=2sin(C+D2)sin(DC2)

(xvii) sin2θ=2sinθcosθ=2tanθ1+tan2θ

(xviii) cos2θ=cos2θsin2θ=2cos2θ1=12sin2θ=1tan2θ1+tan2θ

(xix) 1+cos2θ=2cos2θ or |cosθ|=1+cos2θ2

(xx) 1cos2θ=2sin2θ or |sinθ|=1cos2θ2

(xxi) tanθ=1cos2θsin2θ=sin2θ1+cos2θ

(xxii) tan2θ=2tanθ1tan2θ

(xxiii) sin3θ=3sinθ4sin3θ.

(xxiv) cos3θ=4cos3θ3cosθ.

(xxv) tan3θ=3tanθtan3θ13tan2θ

(xxvi) sin2Asin2B=sin(A+B)sin(AB)=cos2Bcos2A

(xxvii) cos2Asin2B=cos(A+B)cos(AB).

(xxviii) sin(A+B+C)
=sinAcosBcosC+sinBcosAcosC+sinCcosAcosBsinAsinBsinC
=sinAcosBcosCΠsinA
=cosAcosBcosC[tanA+tanB+tanCtanAtanBtanC]

(xxix) cos(A+B+C)
=cosAcosBcosCsinAsinBcosCsinAcosBsinCcosAsinBsinC
=ΠcosAΣsinAsinBcosC
=cosAcosBcosC[1tanAtanBtanBtanCtanCtanA]

(xxx) tan(A+B+C)

=tanA+tanB+tanCtanAtanBtanC1tanAtanBtanBtanCtanCtanA=S1S31S2

(xxxi) sinα+sin(α+β)+sin(α+2β)+...sin(α+¯n1β)

=sin{α+(n12)β}sin(nβ2)sin(β2)

(xxxii) cosα+cos(α+β)+cos(α+2β)+....+cos(α+¯n1β)

=cos{α+(n12)β}sin(nβ2)sin(β2)




6. VALUES OF SOME T-RATIOS FOR ANGLES 18,36,15, 22.5,67.5 etc.

(a) sin18=514=cos72=sinπ10
(b) cos36=5+14=sin54=cosπ5
(c) sin15=3122=cos75=sinπ12
(d) cos15=3+122=sin75=cosπ12
(e) tanπ12=23=313+1=cot5π12
(f) tan5π12=2+3=3+131=cotπ12
(g) tan(22.5)=21=cot(67.5)=cot3π8=tanπ8
(h) tan(67.5)=2+1=cot(22.5)



7. MAXIMUM & MINIMUM VALUES OF TRIGONOMETRIC EXPRESSIONS :

(a) a cosθ+bsinθ will always lie in the interval [a2+b2,a2+b2], i.e. the maximum and minimum values are a2+b2,a2+b2 respectively.

(b) Minimum value of a2tan2θ+b2cot2θ=2ab, where a,b>0

(c) Minimum value of a2cos2θ+b2sec2θ (or a2sin2θ+b2cosec2θ) is either 2ab (when |a||b| ) or a2+b2 (when |a||b| ).




8. IMPORTANT RESULTS :

(a) sinθsin(60θ)sin(60+θ)=14sin3θ
(b) cosθcos(60θ)cos(60+θ)=14cos3θ
(c) tanθtan(60θ)tan(60+θ)=tan3θ
(d) cotθcot(60θ)cot(60+θ)=cot3θ
(e) (i) sin2θ+sin2(60+θ)+sin2(60θ)=32
    (ii) cos2θ+cos2(60+θ)+cos2(60θ)=32
(f) (i) If tanA+tanB+tanC=tanAtanBtanC
    then A+B+C=nπ,nI
   (ii) If tanAtanB+tanBtanC+tanCtanA=1
    then A+B+C=(2n+1)π2,nI
(g) cosθcos2θcos4θ.cos(2n1θ)=sin(2nθ)2nsinθ
(h) cotAtanA=2cot2A



9. CONDITIONAL IDENTITIES :

If A+B+C=180, then
(a) tanA+tanB+tanC=tanAtanBtanC
(b) cotAcotB+cotBcotC+cotCcotA=1
(c) tanA2tanB2+tanB2tanC2+tanC2tanA2=1
(d) cotA2+cotB2+cotC2=cotA2cotB2cotC2
(e) sin2A+sin2B+sin2C=4sinAsinBsinC
(f) cos2A+cos2B+cos2C=14cosAcosBcosC
(g) sinA+sinB+sinC=4cosA2cosB2cosC2
(h) cosA+cosB+cosC=1+4sinA2sinB2sinC2



10. DOMAINS, RANGES AND PERIODICITY OF TRIGONOMETRIC FUNCTIONS :

 Domain  Range  Period sinxR[1,1]2πcosxR[1,1]2πtanxR((2n+1)π/2;nI}RπcotxR[nπ:nI]RπsecxR{(2n+1)π/2:nI}(,1][1,)2πcosecxR{nπ:nI}(,1][1,)2π




11. GRAPH OF TRIGONOMETRIC FUNCTIONS

y = sinx

Trigonometry function graph of sinx

y = cosx

Trigonometry function graph of cosx

y = tanx

Trigonometry function graph of tanx

y = cosecx
Trigonometry function graph of cosecx

y = secx

Trigonometry function graph of secx

y = cotx

Trigonometry function graph of cotx



12. IMPORTANT NOTE :

(a) The sum of interior angles of a polygon of n -sides =(n2)×180=(n2)π
(b) Each interior angle of a regular polygon of n sides =(n2)n×180=(n2)nπ
(c) Sum of exterior angles of a polygon of any number of sides =360=2π


FAQ

What are the basic Trigonometry ratios?

sinθ, tanθ, cosθ, secθ, cotθ and cosecθ

What are the formula of Trigonometry Ratios ?

1. sinθ= (side opposite of angle θ )/ (Hypotenuse)

 2. cosθ=(side adjacent to angle θ)/(Hypotenuse) 

3. tanθ=(side opposite of angle θ )/(side adjacent to angle θ) 

4. cosecθ= reciprocal of sinθ

5. cotθ= reciprocal of tanθ

6. secθ= reciprocal of cosθ

What are the fundamental Identities of trigonometry?

1. sin²θ+cos²θ=1

2. 1+cot²θ=cosec²θ

3. 1+tan²θ=sec²θ

How many ratios are there in Trigonometry?

There are only 6 Trigonometry Ratios. sinθ, tanθ, cosθ, secθ, cotθ and cosecθ


Mathematics-Important Notes, concept & Formula

Comments

Popular posts from this blog

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of x such that F(x) =f(x) then the function F is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of f(x) w.r.t. x and is written symbolically as f(x)dx =F(x)+cddx{F(x)+c} =f(x) , where c is called the constant of integration. Note : If f(x)dx =F(x)+c , then f(ax+b)dx =F(ax+b)a+c,a0 All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) (ax+b)ndx =(ax+b)n+1a(n+1)+c;n1 (ii) dxax+b =1aln|ax+b|+c (iii) eax+bdx \(=\dfrac{1}{...

Logarithm - Notes, Concept and All Important Formula

LOGARITHM LOGARITHM OF A NUMBER : The logarithm of the number N to the base ' a ' is the exponent indicating the power to which the base 'a' must be raised to obtain the number N . This number is designated as logaN . (a) loga N=x , read as log of N to the base aax=N . If a=10 then we write logN or log10 N and if a=e we write lnN or loge N (Natural log) (b) Necessary conditions : N>0;a>0;a1 (c) loga1=0 (d) logaa=1 (e) log1/aa=1 (f) loga(x.y)=logax+logay;x,y>0 (g) \(\log _{a}\left(\dfrac{\mathrm{x}}{y}\right)=\log _{\mathrm{a}} \mathrm{x}-\log _{\mathrm{a}} \mathrm{y} ; \,\, \mathrm{...

Vectors - Notes, Concept and All Important Formula

VECTORS 1. Vectors Physical quantities are broadly divided in two categories viz (a) Vector Quantities & (b) Scalar quantities. (a) Vector quantities: Any quantity, such as velocity, momentum, or force, that has both magnitude and direction and for which vector addition is defined and meaningful; is treated as vector quantities. (b) Scalar quantities: A quantity, such as mass, length, time, density or energy, that has size or magnitude but does not involve the concept of direction is called scalar quantity. All Chapter Notes, Concept and Important Formula 2. REPRESENTATION : Vectors are represented by directed straight line segment magnitude of a=|a|= length PQ direction of a=P to Q 3. Types of Vectors (a) ZERO VECTOR OR NULL VECTOR : A vector of zero magnitude i.e. which has the same initial & terminal point is called a ZERO VECTOR. It is denoted by  O . (b) UNIT VECTOR : A v...