Skip to main content

Trigonometry Ratios and Identities - Notes, Concept and All Important Formula

TRIGONOMETRIC RATIOS & IDENTITIES

    1. RELATION BETWEEN SYSTEM OF MEASUREMENT OF ANGLES :

    \(\dfrac{D}{90}=\dfrac{G}{100}=\dfrac{2 C}{\pi}\)

    1 Radian \(=\dfrac{180}{\pi}\) degree \(\approx 57^{\circ} 17^{\prime} 15^{\prime \prime}\) (approximately)

    1 degree \(=\dfrac{\pi}{180}\) radian \(\approx 0.0175\) radian




    2. BASIC TRIGONOMETRIC IDENTITIES :

    (a) \(\sin ^{2} \theta+\cos ^{2} \theta=1\) or \(\sin ^{2} \theta=1-\cos ^{2} \theta\) or \(\cos ^{2} \theta=1-\sin ^{2} \theta\)
    (b) \(\sec ^{2} \theta-\tan ^{2} \theta=1\) or \(\sec ^{2} \theta=1+\tan ^{2} \theta\) or \(\tan ^{2} \theta=\sec ^{2} \theta-1\)
    (c) If \(\sec \theta+\tan \theta\)\(=\mathrm{k} \Rightarrow \sec \theta-\tan \theta\)\(=\dfrac{1}{\mathrm{k}} \Rightarrow 2 \sec \theta\)\(=\mathrm{k}+\dfrac{1}{\mathrm{k}}\)
    (d) \(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1\) or \(\operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta\) or \(\cot ^{2} \theta=\operatorname{cosec}^{2} \theta-1\)
    (e) If \(\operatorname{cosec} \theta+\cot \theta\)\(=\mathrm{k} \Rightarrow \operatorname{cosec} \theta-\cot \theta\)\(=\dfrac{1}{\mathrm{k}} \Rightarrow 2 \operatorname{cosec} \theta\)\(=\mathrm{k}+\dfrac{1}{\mathrm{k}}\)



    3. SIGNS OF TRIGONOMETRIC FUNCTIONS IN DIFFERENT QUADRANTS:

    SIGNS OF TRIGONOMETRIC FUNCTIONS IN DIFFERENT QUADRANTS



    4. TRIGONOMETRIC FUNCTIONS OF ALLIED ANGLES :

    (a) \(\sin (2 n \pi+\theta)=\sin \theta, \cos (2 n \pi+\theta)=\cos \theta\), where \(n \in \mathbb{I}\)

    (b) 
    • \(\sin (-\theta)=-\sin \theta\)
    • \(\cos (-\theta)=\cos \theta\)
    • \(\sin \left(90^{\circ}-\theta\right)=\cos \theta \quad\)
    • \( \cos \left(90^{\circ}-\theta\right)=\sin \theta\)
    • \(\sin \left(90^{\circ}+\theta\right)=\cos \theta \quad\)
    • \( \cos \left(90^{\circ}+\theta\right)=-\sin \theta\)
    • \(\sin \left(180^{\circ}-\theta\right)=\sin \theta\)
    • \(\cos \left(180^{\circ}-\theta\right)=-\cos \theta\)
    • \(\sin \left(180^{\circ}+\theta\right)=-\sin \theta\)
    • \(\cos \left(180^{\circ}+\theta\right)=-\cos \theta\)
    • \(\sin \left(270^{\circ}-\theta\right)=-\cos \theta\)
    • \(\cos \left(270^{\circ}-\theta\right)=-\sin \theta\)
    • \(\sin \left(270^{\circ}+\theta\right)=-\cos \theta\)
    • \(\cos \left(270^{\circ}+\theta\right)=\sin \theta\)
    Note :
    (i)
    \(\sin n \pi=0 ; \cos n \pi=(-1)^{n} ; \tan n \pi=0\), where \(n \in I\)
    (ii) \(\sin (2 n+1) \dfrac{\pi}{2}=(-1)^{n} ; \cos (2 n+1) \dfrac{\pi}{2}=0\), where \(n \in I\)



    5. IMPORTANT TRIGONOMETRIC FORMULAE :

    (i) \(\sin (A+B)=\sin A \cos B+\cos A \sin B\).

    (ii) \(\sin (A-B)=\sin A \cos B-\cos A \sin B\).

    (iii) \(\cos (A+B)=\cos A \cos B-\sin A \sin B\)

    (iv) \(\cos (A-B)=\cos A \cos B+\sin A \sin B\)

    (v) \(\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A \tan B}\)

    (vi) \(\tan (\mathrm{A}-\mathrm{B})=\dfrac{\tan \mathrm{A}-\tan \mathrm{B}}{1+\tan \mathrm{A} \tan \mathrm{B}}\)

    (vii) \(\cot (A+B)=\dfrac{\cot B \cot A-1}{\cot B+\cot A}\)

    (viii) \(\cot (A-B)=\dfrac{\cot B \cot A+1}{\cot B-\cot A}\)

    (ix) \(2 \sin A \cos B=\sin (A+B)+\sin (A-B)\).

    (x) \(2 \cos A \sin B=\sin (A+B)-\sin (A-B)\).

    (xi) \(2 \cos A \cos B=\cos (A+B)+\cos (A-B)\)

    (xii) \( 2 \sin A \sin B=\cos (A-B)-\cos (A+B)\)

    (xiii) \(\sin C+\sin D=2 \sin \left(\dfrac{C+D}{2}\right) \cos \left(\dfrac{C-D}{2}\right)\)

    (xiv) \(\sin C-\sin D=2 \cos \left(\dfrac{C+D}{2}\right) \sin \left(\dfrac{C-D}{2}\right)\)

    (xv) \(\cos C+\cos D=2 \cos \left(\dfrac{\mathrm{C}+\mathrm{D}}{2}\right) \cos \left(\dfrac{\mathrm{C}-\mathrm{D}}{2}\right)\)

    (xvi) \(\cos C-\cos D\)\(=2 \sin \left(\dfrac{C+D}{2}\right) \sin \left(\dfrac{D-C}{2}\right)\)

    (xvii) \(\sin 2 \theta=2 \sin \theta \cos \theta=\dfrac{2 \tan \theta}{1+\tan ^{2} \theta}\)

    (xviii) \(\cos 2 \theta\)\(=\cos ^{2} \theta-\sin ^{2} \theta\)\(=2 \cos ^{2} \theta-1\)\(=1-2 \sin ^{2} \theta\)\(=\dfrac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\)

    (xix) \(1+\cos 2 \theta=2 \cos ^{2} \theta\) or \(|\cos \theta|=\sqrt{\dfrac{1+\cos 2 \theta}{2}}\)

    (xx) \(1-\cos 2 \theta\)\(=2 \sin ^{2} \theta\) or \(|\sin \theta|\)\(=\sqrt{\dfrac{1-\cos 2 \theta}{2}}\)

    (xxi) \(\tan \theta=\dfrac{1-\cos 2 \theta}{\sin 2 \theta}=\dfrac{\sin 2 \theta}{1+\cos 2 \theta}\)

    (xxii) \(\tan 2 \theta\)\(=\dfrac{2 \tan \theta}{1-\tan ^{2} \theta}\)

    (xxiii) \(\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta\).

    (xxiv) \(\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta\).

    (xxv) \(\tan 3 \theta=\dfrac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\)

    (xxvi) \(\sin ^{2} A-\sin ^{2} B\)\(=\sin (A+B) \cdot \sin (A-B)\)\(=\cos ^{2} B-\cos ^{2} A\)

    (xxvii) \(\cos ^{2} A-\sin ^{2} B=\cos (A+B) \cdot \cos (A-B)\).

    (xxviii) \(\sin (A+B+C)\)
    \(=\sin A \cos B \cos C\)\(+\sin B \cos A \cos C\)\(+\sin C \cos A \cos B\)\(-\sin A \sin B \sin C\)
    \(=\sum \sin A \cos B \cos C-\Pi \sin A \)
    \(=\cos A \cos B \cos C[\tan A+\tan B+\tan C-\)\(\tan A \tan B \tan C] \)

    (xxix) \(\cos (A+B+C) \)
    \(=\cos A \cos B \cos C\)\(-\sin A \sin B \cos C\)\(-\sin A \cos B \sin C \)\(-\cos A \sin B \sin C \)
    \(=\Pi \cos A-\Sigma \sin A \sin B \cos C \)
    \(=\cos A \cos B \cos C[1-\tan A \tan B-\tan B \tan C\)\(-\tan C \tan A]\)

    (xxx) \(\tan (\mathrm{A}+\mathrm{B}+\mathrm{C})\)

    \(=\dfrac{\tan A+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan A \tan B-\tan B \tan C-\tan C \tan A}\)\(=\dfrac{S_{1}-S_{3}}{1-S_{2}}\)

    (xxxi) \(\sin \alpha+\sin (\alpha+\beta)+\sin (\alpha+2 \beta)+\ldots\)\(... \sin (\alpha+\overline{n-1} \beta)\)

    \(=\dfrac{\sin \left\{\alpha+\left(\dfrac{\mathrm{n}-1}{2}\right) \beta\right\} \sin \left(\dfrac{\mathrm{n} \beta}{2}\right)}{\sin \left(\dfrac{\beta}{2}\right)}\)

    (xxxii) \( \cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots\)\(....+\cos (\alpha+\overline{n-1} \beta)\)

    \(=\dfrac{\cos \left\{\alpha+\left(\dfrac{\mathrm{n}-1}{2}\right) \beta\right\} \sin \left(\dfrac{\mathrm{n} \beta}{2}\right)}{\sin \left(\dfrac{\beta}{2}\right)}\)




    6. VALUES OF SOME T-RATIOS FOR ANGLES \(18^{\circ}, 36^{\circ}, 15^{\circ}\), \(22.5^{\circ}, 67.5^{\circ}\) etc.

    (a) \(\sin 18^{\circ}=\dfrac{\sqrt{5}-1}{4}=\cos 72^{\circ}=\sin \dfrac{\pi}{10}\)
    (b) \(\cos 36^{\circ}=\dfrac{\sqrt{5}+1}{4}=\sin 54^{\circ}=\cos \dfrac{\pi}{5}\)
    (c) \(\sin 15^{\circ}=\dfrac{\sqrt{3}-1}{2 \sqrt{2}}=\cos 75^{\circ}=\sin \dfrac{\pi}{12}\)
    (d) \(\cos 15^{\circ}=\dfrac{\sqrt{3}+1}{2 \sqrt{2}}=\sin 75^{\circ}=\cos \dfrac{\pi}{12}\)
    (e) \(\tan \dfrac{\pi}{12}=2-\sqrt{3}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}=\cot \dfrac{5 \pi}{12}\)
    (f) \(\tan \dfrac{5 \pi}{12}=2+\sqrt{3}=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}=\cot \dfrac{\pi}{12}\)
    (g) \(\tan \left(22.5^{\circ}\right)=\sqrt{2}-1=\cot \left(67.5^{\circ}\right)\)\(=\cot \dfrac{3 \pi}{8}=\tan \dfrac{\pi}{8}\)
    (h) \(\tan \left(67.5^{\circ}\right)=\sqrt{2}+1=\cot \left(22.5^{\circ}\right)\)



    7. MAXIMUM & MINIMUM VALUES OF TRIGONOMETRIC EXPRESSIONS :

    (a) a \(\cos \theta+\mathrm{b} \sin \theta\) will always lie in the interval \(\left[-\sqrt{a^{2}+b^{2}}, \sqrt{a^{2}+b^{2}}\right]\), i.e. the maximum and minimum values are \(\sqrt{a^{2}+b^{2}},-\sqrt{a^{2}+b^{2}}\) respectively.

    (b) Minimum value of \(a^{2} \tan ^{2} \theta+b^{2} \cot ^{2} \theta=2 a b\), where \(a, b>0\)

    (c) Minimum value of \(a^{2} \cos ^{2} \theta+b^{2} \sec ^{2} \theta\) (or \(\left.a^{2} \sin ^{2} \theta+b^{2} \operatorname{cosec}^{2} \theta\right)\) is either \(2 \mathrm{ab}\) (when \(|\mathrm{a}| \geq|\mathrm{b}|\) ) or \(\mathrm{a}^{2}+\mathrm{b}^{2}\) (when \(|\mathrm{a}| \leq|\mathrm{b}|\) ).




    8. IMPORTANT RESULTS :

    (a) \(\sin \theta \sin \left(60^{\circ}-\theta\right) \sin \left(60^{\circ}+\theta\right)=\dfrac{1}{4} \sin 3 \theta\)
    (b) \(\cos \theta \cdot \cos \left(60^{\circ}-\theta\right) \cos \left(60^{\circ}+\theta\right)=\dfrac{1}{4} \cos 3 \theta\)
    (c) \(\tan \theta \tan \left(60^{\circ}-\theta\right) \tan \left(60^{\circ}+\theta\right)=\tan 3 \theta\)
    (d) \(\cot \theta \cot \left(60^{\circ}-\theta\right) \cot \left(60^{\circ}+\theta\right)=\cot 3 \theta\)
    (e) (i) \(\sin ^{2} \theta+\sin ^{2}\left(60^{\circ}+\theta\right)+\sin ^{2}\left(60^{\circ}-\theta\right)=\dfrac{3}{2}\)
        (ii) \(\cos ^{2} \theta+\cos ^{2}\left(60^{\circ}+\theta\right)+\cos ^{2}\left(60^{\circ}-\theta\right)=\dfrac{3}{2}\)
    (f) (i) If \(\tan A+\tan B+\tan C=\tan A \tan B \tan C\)
        then \(\mathrm{A}+\mathrm{B}+\mathrm{C}=\mathrm{n} \pi, \mathrm{n} \in \mathrm{I}\)
       (ii) If \(\tan A \tan B+\tan B \tan C+\tan C \tan A=1\)
        then \(A+B+C=(2 n+1) \dfrac{\pi}{2}, n \in I\)
    (g) \(\cos \theta \cos 2 \theta \cos 4 \theta \ldots . \cos \left(2^{\mathrm{n}-1} \theta\right)=\dfrac{\sin \left(2^{\mathrm{n}} \theta\right)}{2^{\mathrm{n}} \sin \theta}\)
    (h) \(\cot A-\tan A=2 \cot 2 A\)



    9. CONDITIONAL IDENTITIES :

    If \(A+B+C=180^{\circ}\), then
    (a) \(\tan A+\tan B+\tan C=\tan A \tan B \tan C\)
    (b) \(\cot A \cot B+\cot B \cot C+\cot C \cot A=1\)
    (c) \(\tan \dfrac{A}{2} \tan \dfrac{B}{2}+\tan \dfrac{B}{2} \tan \dfrac{C}{2}+\tan \dfrac{C}{2} \tan \dfrac{A}{2}\)\(=1\)
    (d) \(\cot \dfrac{A}{2}+\cot \dfrac{B}{2}+\cot \dfrac{C}{2}=\cot \dfrac{A}{2} \cot \dfrac{B}{2} \cot \dfrac{C}{2}\)
    (e) \(\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C\)
    (f) \(\cos 2 A+\cos 2 B+\cos 2 C\)\(=-1-4 \cos A \cos B \cos C\)
    (g) \(\sin A+\sin B+\sin C=4 \cos \dfrac{A}{2} \cos \dfrac{B}{2} \cos \dfrac{C}{2}\)
    (h) \(\cos A+\cos B+\cos C\)\(=1+4 \sin \dfrac{A}{2} \sin \dfrac{B}{2} \sin \dfrac{C}{2}\)



    10. DOMAINS, RANGES AND PERIODICITY OF TRIGONOMETRIC FUNCTIONS :

    \(\begin{array}{|l|l|l|c|} \hline & \text { Domain } & \text { Range } & \text { Period } \\ \hline \sin \mathrm{x} & \mathrm{R} & {[-1,1]} & 2 \pi \\ \hline \cos \mathrm{x} & \mathrm{R} & {[-1,1]} & 2 \pi \\ \hline \tan \mathrm{x} & \mathrm{R}-((2 \mathrm{n}+1) \pi / 2 ; \mathrm{n} \in \mathrm{I}\} & \mathrm{R} & \pi \\ \hline \cot \mathrm{x} & \mathrm{R}-[\mathrm{n} \pi: \mathrm{n} \in \mathrm{I}] & \mathrm{R} & \pi \\ \hline \sec \mathrm{x} & \mathrm{R}-\{(2 \mathrm{n}+1) \pi / 2: \mathrm{n} \in \mathrm{I}\} & (-\infty,-1] \cup[1, \infty) & 2 \pi \\ \hline \operatorname{cosec} \mathrm{x} & \mathrm{R}-\{\mathrm{n} \pi: \mathrm{n} \in \mathrm{I}\} & (-\infty,-1] \cup[1, \infty) & 2 \pi \\ \hline \end{array}\)




    11. GRAPH OF TRIGONOMETRIC FUNCTIONS

    y = sinx

    Trigonometry function graph of sinx

    y = cosx

    Trigonometry function graph of cosx

    y = tanx

    Trigonometry function graph of tanx

    y = cosecx
    Trigonometry function graph of cosecx

    y = secx

    Trigonometry function graph of secx

    y = cotx

    Trigonometry function graph of cotx



    12. IMPORTANT NOTE :

    (a) The sum of interior angles of a polygon of \(\mathrm{n}\) -sides \(=(n-2) \times 180^{\circ}=(\mathrm{n}-2) \pi\)
    (b) Each interior angle of a regular polygon of \(\mathrm{n}\) sides \(=\dfrac{(\mathrm{n}-2)}{\mathrm{n}} \times 180^{\circ}=\dfrac{(\mathrm{n}-2)}{\mathrm{n}} \pi\)
    (c) Sum of exterior angles of a polygon of any number of sides \(=360^{\circ}=2 \pi\)


    FAQ

    What are the basic Trigonometry ratios?

    sinθ, tanθ, cosθ, secθ, cotθ and cosecθ

    What are the formula of Trigonometry Ratios ?

    1. sinθ= (side opposite of angle θ )/ (Hypotenuse)

     2. cosθ=(side adjacent to angle θ)/(Hypotenuse) 

    3. tanθ=(side opposite of angle θ )/(side adjacent to angle θ) 

    4. cosecθ= reciprocal of sinθ

    5. cotθ= reciprocal of tanθ

    6. secθ= reciprocal of cosθ

    What are the fundamental Identities of trigonometry?

    1. sin²θ+cos²θ=1

    2. 1+cot²θ=cosec²θ

    3. 1+tan²θ=sec²θ

    How many ratios are there in Trigonometry?

    There are only 6 Trigonometry Ratios. sinθ, tanθ, cosθ, secθ, cotθ and cosecθ


    Mathematics-Important Notes, concept & Formula

    Comments

    Popular posts from this blog

    Indefinite Integration - Notes, Concept and All Important Formula

    INDEFINITE INTEGRATION If  f & F are function of \(x\) such that \(F^{\prime}(x)\) \(=f(x)\) then the function \(F\) is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of \(\mathrm{f}(\mathrm{x})\) w.r.t. \(\mathrm{x}\) and is written symbolically as \(\displaystyle \int \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}\) \(=\mathrm{F}(\mathrm{x})+\mathrm{c} \Leftrightarrow \dfrac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{F}(\mathrm{x})+\mathrm{c}\}\) \(=\mathrm{f}(\mathrm{x})\) , where \(\mathrm{c}\) is called the constant of integration. Note : If \(\displaystyle \int f(x) d x\) \(=F(x)+c\) , then \(\displaystyle \int f(a x+b) d x\) \(=\dfrac{F(a x+b)}{a}+c, a \neq 0\) All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) \( \displaystyle \int(a x+b)^{n} d x\) \(=\dfrac{(a x+b)^{n+1}}{a(n+1)}+c ; n \neq-1\) (ii) \(\displaystyle \int \dfrac{d x}{a x+b}\) \(=\dfrac{1}{a} \ln|a x+b|+c\) (iii) \(\displaystyle \int e^{\mathrm{ax}+b} \mathrm{dx}\) \(=\dfrac{1}{...

    Difference and relation between Differentiation and Integration

    Relation between Differentiation and Integration Table Of Contents Look at the information given below. \[\mathbf{ y=f(x)}\] \[ \mathbf{ f'(x)\rightarrow \text{Derivatives of f(x)}}\] \[ \mathbf{\displaystyle \int_a^b f’(x) = ?}\] Can you tell me the value of above integral? Yes, it will be equal to f(b)-f(a) . We have already known this result. It tells us that integration is just the reverse of differentiation, integral of the derivative of the function f(x) is just equal to the difference in the function f(x) evaluated at the limits of integration. Indefinite integration- Notes and Formula Part 1 Now with this topic, we will understand how to apply this result to find the integral of a function.  Consider this function \(\mathbf{g(x)=x^2}\) Let's find the integral of this function from a to b i.e \(\mathbf{\displaystyle \int_a^b g(x) \, dx}\) .  Can you think how we can apply this result to find ...