Processing math: 100%
Skip to main content

Trigonometry Ratios and Identities - Notes, Concept and All Important Formula

TRIGONOMETRIC RATIOS & IDENTITIES

1. RELATION BETWEEN SYSTEM OF MEASUREMENT OF ANGLES :

D90=G100=2Cπ

1 Radian =180π degree 571715 (approximately)

1 degree =π180 radian 0.0175 radian




2. BASIC TRIGONOMETRIC IDENTITIES :

(a) sin2θ+cos2θ=1 or sin2θ=1cos2θ or cos2θ=1sin2θ
(b) sec2θtan2θ=1 or sec2θ=1+tan2θ or tan2θ=sec2θ1
(c) If secθ+tanθ=ksecθtanθ=1k2secθ=k+1k
(d) cosec2θcot2θ=1 or cosec2θ=1+cot2θ or cot2θ=cosec2θ1
(e) If cosecθ+cotθ=kcosecθcotθ=1k2cosecθ=k+1k



3. SIGNS OF TRIGONOMETRIC FUNCTIONS IN DIFFERENT QUADRANTS:

SIGNS OF TRIGONOMETRIC FUNCTIONS IN DIFFERENT QUADRANTS



4. TRIGONOMETRIC FUNCTIONS OF ALLIED ANGLES :

(a) sin(2nπ+θ)=sinθ,cos(2nπ+θ)=cosθ, where nI

(b) 
  • sin(θ)=sinθ
  • cos(θ)=cosθ
  • sin(90θ)=cosθ
  • cos(90θ)=sinθ
  • sin(90+θ)=cosθ
  • cos(90+θ)=sinθ
  • sin(180θ)=sinθ
  • cos(180θ)=cosθ
  • sin(180+θ)=sinθ
  • cos(180+θ)=cosθ
  • sin(270θ)=cosθ
  • cos(270θ)=sinθ
  • sin(270+θ)=cosθ
  • cos(270+θ)=sinθ
Note :
(i)
sinnπ=0;cosnπ=(1)n;tannπ=0, where nI
(ii) sin(2n+1)π2=(1)n;cos(2n+1)π2=0, where nI



5. IMPORTANT TRIGONOMETRIC FORMULAE :

(i) sin(A+B)=sinAcosB+cosAsinB.

(ii) sin(AB)=sinAcosBcosAsinB.

(iii) cos(A+B)=cosAcosBsinAsinB

(iv) cos(AB)=cosAcosB+sinAsinB

(v) tan(A+B)=tanA+tanB1tanAtanB

(vi) tan(AB)=tanAtanB1+tanAtanB

(vii) cot(A+B)=cotBcotA1cotB+cotA

(viii) cot(AB)=cotBcotA+1cotBcotA

(ix) 2sinAcosB=sin(A+B)+sin(AB).

(x) 2cosAsinB=sin(A+B)sin(AB).

(xi) 2cosAcosB=cos(A+B)+cos(AB)

(xii) 2sinAsinB=cos(AB)cos(A+B)

(xiii) sinC+sinD=2sin(C+D2)cos(CD2)

(xiv) sinCsinD=2cos(C+D2)sin(CD2)

(xv) cosC+cosD=2cos(C+D2)cos(CD2)

(xvi) cosCcosD=2sin(C+D2)sin(DC2)

(xvii) sin2θ=2sinθcosθ=2tanθ1+tan2θ

(xviii) cos2θ=cos2θsin2θ=2cos2θ1=12sin2θ=1tan2θ1+tan2θ

(xix) 1+cos2θ=2cos2θ or |cosθ|=1+cos2θ2

(xx) 1cos2θ=2sin2θ or |sinθ|=1cos2θ2

(xxi) tanθ=1cos2θsin2θ=sin2θ1+cos2θ

(xxii) tan2θ=2tanθ1tan2θ

(xxiii) sin3θ=3sinθ4sin3θ.

(xxiv) cos3θ=4cos3θ3cosθ.

(xxv) tan3θ=3tanθtan3θ13tan2θ

(xxvi) sin2Asin2B=sin(A+B)sin(AB)=cos2Bcos2A

(xxvii) cos2Asin2B=cos(A+B)cos(AB).

(xxviii) sin(A+B+C)
=sinAcosBcosC+sinBcosAcosC+sinCcosAcosBsinAsinBsinC
=sinAcosBcosCΠsinA
=cosAcosBcosC[tanA+tanB+tanCtanAtanBtanC]

(xxix) cos(A+B+C)
=cosAcosBcosCsinAsinBcosCsinAcosBsinCcosAsinBsinC
=ΠcosAΣsinAsinBcosC
=cosAcosBcosC[1tanAtanBtanBtanCtanCtanA]

(xxx) tan(A+B+C)

=tanA+tanB+tanCtanAtanBtanC1tanAtanBtanBtanCtanCtanA=S1S31S2

(xxxi) sinα+sin(α+β)+sin(α+2β)+...sin(α+¯n1β)

=sin{α+(n12)β}sin(nβ2)sin(β2)

(xxxii) cosα+cos(α+β)+cos(α+2β)+....+cos(α+¯n1β)

=cos{α+(n12)β}sin(nβ2)sin(β2)




6. VALUES OF SOME T-RATIOS FOR ANGLES 18,36,15, 22.5,67.5 etc.

(a) sin18=514=cos72=sinπ10
(b) cos36=5+14=sin54=cosπ5
(c) sin15=3122=cos75=sinπ12
(d) cos15=3+122=sin75=cosπ12
(e) tanπ12=23=313+1=cot5π12
(f) tan5π12=2+3=3+131=cotπ12
(g) tan(22.5)=21=cot(67.5)=cot3π8=tanπ8
(h) tan(67.5)=2+1=cot(22.5)



7. MAXIMUM & MINIMUM VALUES OF TRIGONOMETRIC EXPRESSIONS :

(a) a cosθ+bsinθ will always lie in the interval [a2+b2,a2+b2], i.e. the maximum and minimum values are a2+b2,a2+b2 respectively.

(b) Minimum value of a2tan2θ+b2cot2θ=2ab, where a,b>0

(c) Minimum value of a2cos2θ+b2sec2θ (or a2sin2θ+b2cosec2θ) is either 2ab (when |a||b| ) or a2+b2 (when |a||b| ).




8. IMPORTANT RESULTS :

(a) sinθsin(60θ)sin(60+θ)=14sin3θ
(b) cosθcos(60θ)cos(60+θ)=14cos3θ
(c) tanθtan(60θ)tan(60+θ)=tan3θ
(d) cotθcot(60θ)cot(60+θ)=cot3θ
(e) (i) sin2θ+sin2(60+θ)+sin2(60θ)=32
    (ii) cos2θ+cos2(60+θ)+cos2(60θ)=32
(f) (i) If tanA+tanB+tanC=tanAtanBtanC
    then A+B+C=nπ,nI
   (ii) If tanAtanB+tanBtanC+tanCtanA=1
    then A+B+C=(2n+1)π2,nI
(g) cosθcos2θcos4θ.cos(2n1θ)=sin(2nθ)2nsinθ
(h) cotAtanA=2cot2A



9. CONDITIONAL IDENTITIES :

If A+B+C=180, then
(a) tanA+tanB+tanC=tanAtanBtanC
(b) cotAcotB+cotBcotC+cotCcotA=1
(c) tanA2tanB2+tanB2tanC2+tanC2tanA2=1
(d) cotA2+cotB2+cotC2=cotA2cotB2cotC2
(e) sin2A+sin2B+sin2C=4sinAsinBsinC
(f) cos2A+cos2B+cos2C=14cosAcosBcosC
(g) sinA+sinB+sinC=4cosA2cosB2cosC2
(h) cosA+cosB+cosC=1+4sinA2sinB2sinC2



10. DOMAINS, RANGES AND PERIODICITY OF TRIGONOMETRIC FUNCTIONS :

 Domain  Range  Period sinxR[1,1]2πcosxR[1,1]2πtanxR((2n+1)π/2;nI}RπcotxR[nπ:nI]RπsecxR{(2n+1)π/2:nI}(,1][1,)2πcosecxR{nπ:nI}(,1][1,)2π




11. GRAPH OF TRIGONOMETRIC FUNCTIONS

y = sinx

Trigonometry function graph of sinx

y = cosx

Trigonometry function graph of cosx

y = tanx

Trigonometry function graph of tanx

y = cosecx
Trigonometry function graph of cosecx

y = secx

Trigonometry function graph of secx

y = cotx

Trigonometry function graph of cotx



12. IMPORTANT NOTE :

(a) The sum of interior angles of a polygon of n -sides =(n2)×180=(n2)π
(b) Each interior angle of a regular polygon of n sides =(n2)n×180=(n2)nπ
(c) Sum of exterior angles of a polygon of any number of sides =360=2π


FAQ

What are the basic Trigonometry ratios?

sinθ, tanθ, cosθ, secθ, cotθ and cosecθ

What are the formula of Trigonometry Ratios ?

1. sinθ= (side opposite of angle θ )/ (Hypotenuse)

 2. cosθ=(side adjacent to angle θ)/(Hypotenuse) 

3. tanθ=(side opposite of angle θ )/(side adjacent to angle θ) 

4. cosecθ= reciprocal of sinθ

5. cotθ= reciprocal of tanθ

6. secθ= reciprocal of cosθ

What are the fundamental Identities of trigonometry?

1. sin²θ+cos²θ=1

2. 1+cot²θ=cosec²θ

3. 1+tan²θ=sec²θ

How many ratios are there in Trigonometry?

There are only 6 Trigonometry Ratios. sinθ, tanθ, cosθ, secθ, cotθ and cosecθ


Mathematics-Important Notes, concept & Formula

Comments

Popular posts from this blog

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of x such that F(x) =f(x) then the function F is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of f(x) w.r.t. x and is written symbolically as f(x)dx =F(x)+cddx{F(x)+c} =f(x) , where c is called the constant of integration. Note : If f(x)dx =F(x)+c , then f(ax+b)dx =F(ax+b)a+c,a0 All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) (ax+b)ndx =(ax+b)n+1a(n+1)+c;n1 (ii) dxax+b =1aln|ax+b|+c (iii) eax+bdx \(=\dfrac{1}{...

Logarithm - Notes, Concept and All Important Formula

LOGARITHM LOGARITHM OF A NUMBER : The logarithm of the number N to the base ' a ' is the exponent indicating the power to which the base 'a' must be raised to obtain the number N . This number is designated as logaN . (a) loga N=x , read as log of N to the base aax=N . If a=10 then we write logN or log10 N and if a=e we write lnN or loge N (Natural log) (b) Necessary conditions : N>0;a>0;a1 (c) loga1=0 (d) logaa=1 (e) log1/aa=1 (f) loga(x.y)=logax+logay;x,y>0 (g) \(\log _{a}\left(\dfrac{\mathrm{x}}{y}\right)=\log _{\mathrm{a}} \mathrm{x}-\log _{\mathrm{a}} \mathrm{y} ; \,\, \mathrm{...

Ellipse - Notes, Concept and All Important Formula

ELLIPSE 1. STANDARD EQUATION & DEFINITION : Standard equation of an ellipse referred to its principal axis along the co-ordinate axis is x2a2+y2b2=1 . where a>b & b2=a2(1e2) a2b2=a2e2. where e= eccentricity (0<e<1) . FOCI:S(ae,0) &  S(ae,0). (a) Equation of directrices : x=ae & x=ae .  (b) Vertices: A(a,0) &  A(a,0) (c) Major axis : The line segment AA in which the foci S & S lie is of length 2a & is called the major axis (a>b) of the ellipse. Point of intersection of major axis with dir...