TRIGONOMETRIC RATIOS & IDENTITIES
- 1. RELATION BETWEEN SYSTEM OF MEASUREMENT OF ANGLES :
- 2. BASIC TRIGONOMETRIC IDENTITIES :
- 3. SIGNS OF TRIGONOMETRIC FUNCTIONS IN DIFFERENT QUADRANTS:
- 4. TRIGONOMETRIC FUNCTIONS OF ALLIED ANGLES :
- 5. IMPORTANT TRIGONOMETRIC FORMULAE :
- 6. VALUES OF SOME T-RATIOS FOR ANGLES 18∘,36∘,15∘, 22.5∘,67.5∘ etc.
- 7. MAXIMUM & MINIMUM VALUES OF TRIGONOMETRIC EXPRESSIONS :
- 8. IMPORTANT RESULTS :
- 9. CONDITIONAL IDENTITIES :
- 10. DOMAINS, RANGES AND PERIODICITY OF TRIGONOMETRIC FUNCTIONS :
- 11. GRAPH OF TRIGONOMETRIC FUNCTIONS
- 12. IMPORTANT NOTE :
- FAQ
1. RELATION BETWEEN SYSTEM OF MEASUREMENT OF ANGLES :
D90=G100=2Cπ
1 Radian =180π degree ≈57∘17′15′′ (approximately)
1 degree =π180 radian ≈0.0175 radian
2. BASIC TRIGONOMETRIC IDENTITIES :
(b) sec2θ−tan2θ=1 or sec2θ=1+tan2θ or tan2θ=sec2θ−1
(c) If secθ+tanθ=k⇒secθ−tanθ=1k⇒2secθ=k+1k
(d) cosec2θ−cot2θ=1 or cosec2θ=1+cot2θ or cot2θ=cosec2θ−1
(e) If cosecθ+cotθ=k⇒cosecθ−cotθ=1k⇒2cosecθ=k+1k
3. SIGNS OF TRIGONOMETRIC FUNCTIONS IN DIFFERENT QUADRANTS:
4. TRIGONOMETRIC FUNCTIONS OF ALLIED ANGLES :
(a) sin(2nπ+θ)=sinθ,cos(2nπ+θ)=cosθ, where n∈I
- sin(−θ)=−sinθ
- cos(−θ)=cosθ
- sin(90∘−θ)=cosθ
- cos(90∘−θ)=sinθ
- sin(90∘+θ)=cosθ
- cos(90∘+θ)=−sinθ
- sin(180∘−θ)=sinθ
- cos(180∘−θ)=−cosθ
- sin(180∘+θ)=−sinθ
- cos(180∘+θ)=−cosθ
- sin(270∘−θ)=−cosθ
- cos(270∘−θ)=−sinθ
- sin(270∘+θ)=−cosθ
- cos(270∘+θ)=sinθ
(i) sinnπ=0;cosnπ=(−1)n;tannπ=0, where n∈I
(ii) sin(2n+1)π2=(−1)n;cos(2n+1)π2=0, where n∈I
5. IMPORTANT TRIGONOMETRIC FORMULAE :
(i) sin(A+B)=sinAcosB+cosAsinB.
(ii) sin(A−B)=sinAcosB−cosAsinB.
(iii) cos(A+B)=cosAcosB−sinAsinB
(iv) cos(A−B)=cosAcosB+sinAsinB
(v) tan(A+B)=tanA+tanB1−tanAtanB
(vi) tan(A−B)=tanA−tanB1+tanAtanB
(vii) cot(A+B)=cotBcotA−1cotB+cotA
(viii) cot(A−B)=cotBcotA+1cotB−cotA
(ix) 2sinAcosB=sin(A+B)+sin(A−B).
(x) 2cosAsinB=sin(A+B)−sin(A−B).
(xi) 2cosAcosB=cos(A+B)+cos(A−B)
(xii) 2sinAsinB=cos(A−B)−cos(A+B)
(xiii) sinC+sinD=2sin(C+D2)cos(C−D2)
(xiv) sinC−sinD=2cos(C+D2)sin(C−D2)
(xv) cosC+cosD=2cos(C+D2)cos(C−D2)
(xvi) cosC−cosD=2sin(C+D2)sin(D−C2)
(xvii) sin2θ=2sinθcosθ=2tanθ1+tan2θ
(xviii) cos2θ=cos2θ−sin2θ=2cos2θ−1=1−2sin2θ=1−tan2θ1+tan2θ
(xix) 1+cos2θ=2cos2θ or |cosθ|=√1+cos2θ2
(xx) 1−cos2θ=2sin2θ or |sinθ|=√1−cos2θ2
(xxi) tanθ=1−cos2θsin2θ=sin2θ1+cos2θ
(xxii) tan2θ=2tanθ1−tan2θ
(xxiii) sin3θ=3sinθ−4sin3θ.
(xxiv) cos3θ=4cos3θ−3cosθ.
(xxv) tan3θ=3tanθ−tan3θ1−3tan2θ
(xxvi) sin2A−sin2B=sin(A+B)⋅sin(A−B)=cos2B−cos2A
(xxvii) cos2A−sin2B=cos(A+B)⋅cos(A−B).
=sinAcosBcosC+sinBcosAcosC+sinCcosAcosB−sinAsinBsinC
=∑sinAcosBcosC−ΠsinA
=cosAcosBcosC[tanA+tanB+tanC−tanAtanBtanC]
=cosAcosBcosC−sinAsinBcosC−sinAcosBsinC−cosAsinBsinC
=ΠcosA−ΣsinAsinBcosC
=cosAcosBcosC[1−tanAtanB−tanBtanC−tanCtanA]
(xxx) tan(A+B+C)
=tanA+tanB+tanC−tanAtanBtanC1−tanAtanB−tanBtanC−tanCtanA=S1−S31−S2
(xxxi) sinα+sin(α+β)+sin(α+2β)+…...sin(α+¯n−1β)
=sin{α+(n−12)β}sin(nβ2)sin(β2)
(xxxii) cosα+cos(α+β)+cos(α+2β)+…....+cos(α+¯n−1β)
=cos{α+(n−12)β}sin(nβ2)sin(β2)
6. VALUES OF SOME T-RATIOS FOR ANGLES 18∘,36∘,15∘, 22.5∘,67.5∘ etc.
(b) cos36∘=√5+14=sin54∘=cosπ5
(c) sin15∘=√3−12√2=cos75∘=sinπ12
(d) cos15∘=√3+12√2=sin75∘=cosπ12
(e) tanπ12=2−√3=√3−1√3+1=cot5π12
(f) tan5π12=2+√3=√3+1√3−1=cotπ12
(g) tan(22.5∘)=√2−1=cot(67.5∘)=cot3π8=tanπ8
(h) tan(67.5∘)=√2+1=cot(22.5∘)
7. MAXIMUM & MINIMUM VALUES OF TRIGONOMETRIC EXPRESSIONS :
(a) a cosθ+bsinθ will always lie in the interval [−√a2+b2,√a2+b2], i.e. the maximum and minimum values are √a2+b2,−√a2+b2 respectively.
(b) Minimum value of a2tan2θ+b2cot2θ=2ab, where a,b>0
(c) Minimum value of a2cos2θ+b2sec2θ (or a2sin2θ+b2cosec2θ) is either 2ab (when |a|≥|b| ) or a2+b2 (when |a|≤|b| ).
8. IMPORTANT RESULTS :
(b) cosθ⋅cos(60∘−θ)cos(60∘+θ)=14cos3θ
(c) tanθtan(60∘−θ)tan(60∘+θ)=tan3θ
(d) cotθcot(60∘−θ)cot(60∘+θ)=cot3θ
(e) (i) sin2θ+sin2(60∘+θ)+sin2(60∘−θ)=32
(ii) cos2θ+cos2(60∘+θ)+cos2(60∘−θ)=32
(f) (i) If tanA+tanB+tanC=tanAtanBtanC
then A+B+C=nπ,n∈I
(ii) If tanAtanB+tanBtanC+tanCtanA=1
then A+B+C=(2n+1)π2,n∈I
(g) cosθcos2θcos4θ….cos(2n−1θ)=sin(2nθ)2nsinθ
(h) cotA−tanA=2cot2A
9. CONDITIONAL IDENTITIES :
(a) tanA+tanB+tanC=tanAtanBtanC
(b) cotAcotB+cotBcotC+cotCcotA=1
(c) tanA2tanB2+tanB2tanC2+tanC2tanA2=1
(d) cotA2+cotB2+cotC2=cotA2cotB2cotC2
(e) sin2A+sin2B+sin2C=4sinAsinBsinC
(f) cos2A+cos2B+cos2C=−1−4cosAcosBcosC
(g) sinA+sinB+sinC=4cosA2cosB2cosC2
(h) cosA+cosB+cosC=1+4sinA2sinB2sinC2
10. DOMAINS, RANGES AND PERIODICITY OF TRIGONOMETRIC FUNCTIONS :
Domain Range Period sinxR[−1,1]2πcosxR[−1,1]2πtanxR−((2n+1)π/2;n∈I}RπcotxR−[nπ:n∈I]RπsecxR−{(2n+1)π/2:n∈I}(−∞,−1]∪[1,∞)2πcosecxR−{nπ:n∈I}(−∞,−1]∪[1,∞)2π
11. GRAPH OF TRIGONOMETRIC FUNCTIONS
y = sinx
y = cosx
y = tanx
y = cosecx
y = secx
y = cotx
12. IMPORTANT NOTE :
(b) Each interior angle of a regular polygon of n sides =(n−2)n×180∘=(n−2)nπ
(c) Sum of exterior angles of a polygon of any number of sides =360∘=2π
FAQ
What are the basic Trigonometry ratios?
sinθ, tanθ, cosθ, secθ, cotθ and cosecθ
What are the formula of Trigonometry Ratios ?
1. sinθ= (side opposite of angle θ )/ (Hypotenuse)
2. cosθ=(side adjacent to angle θ)/(Hypotenuse)
3. tanθ=(side opposite of angle θ )/(side adjacent to angle θ)
4. cosecθ= reciprocal of sinθ
5. cotθ= reciprocal of tanθ
6. secθ= reciprocal of cosθ
What are the fundamental Identities of trigonometry?
1. sin²θ+cos²θ=1
2. 1+cot²θ=cosec²θ
3. 1+tan²θ=sec²θ
How many ratios are there in Trigonometry?
There are only 6 Trigonometry Ratios. sinθ, tanθ, cosθ, secθ, cotθ and cosecθ
Comments
Post a Comment