Skip to main content

Method of differntiation - Notes, Concept and All Important Formula

METHODS OF DIFFERENTIATION

1. DERIVATIVE OF f(x) FROM THE FIRST PRINCIPLE :

Obtaining the derivative using the definition \(\displaystyle\displaystyle \lim_{\delta x \rightarrow 0} \dfrac{\delta y}{\delta x}= \displaystyle\displaystyle \lim_{\delta x \rightarrow 0} \dfrac{f(x+\delta x)-f(x)}{\delta x}=f^{\prime}(x)=\dfrac{d y}{d x}\) is called calculating derivative using first principle or ab initio or delta method.




2. FUNDAMENTAL THEOREMS :

If \(f\) and \(g\) are derivable function of \(x\), then,

(a) \(\dfrac{\mathrm{d}}{\mathrm{dx}}(\mathrm{f} \pm \mathrm{g})=\dfrac{\mathrm{df}}{\mathrm{dx}} \pm \dfrac{\mathrm{d} \mathrm{g}}{\mathrm{d} \mathrm{x}}\), known as SUM RULE

(b) \(\dfrac{\mathrm{d}}{\mathrm{dx}}(\mathrm{cf})=\mathrm{c} \dfrac{\mathrm{df}}{\mathrm{dx}}\), where \(\mathrm{c}\) is any constant

(c) \(\dfrac{\mathrm{d}}{\mathrm{dx}}(\mathrm{fg})=\mathrm{f} \dfrac{\mathrm{dg}}{\mathrm{dx}}+\mathrm{g} \dfrac{\mathrm{df}}{\mathrm{dx}}\), known as PRODUCT RULE

(d) \(\dfrac{\mathrm{d}}{\mathrm{dx}}\left(\dfrac{\mathrm{f}}{\mathrm{g}}\right)=\dfrac{\mathrm{g}\left(\dfrac{\mathrm{df}}{\mathrm{dx}}\right)-\mathrm{f}\left(\dfrac{\mathrm{d} g}{\mathrm{dx}}\right)}{\mathrm{g}^{2}}\)

where \(g \neq 0\) known as QUOTIENT RULE

(e) If \(y=f(u) \) & \(u=g(x)\), then \(\dfrac{d y}{d x}=\dfrac{d y}{d u} \cdot \dfrac{d u}{d x}\), known as CHAIN RULE

Note : In general if \(y=f(u)\), then \(\dfrac{d y}{d x}=f^{\prime}(u) \cdot \dfrac{d u}{d x}\).




3. DERIVATIVE OF STANDARD FUNCTIONS :

\(\begin{array}{l} \begin{array}{|c|c|c|} \hline S.No & f(x) & f'(x) \\ \hline \text{(i)} & x^n & nx^{n-1} \\ \text{(ii)} & e^x & e^x \\ \text{(iii)} & a^x & a^x\, \ln a \, , a\gt 0 \\ \text{(iv)} & \ln x & 1/x \\ \text{(v)} & \log_a x & (1/x)\log_a e \, , a\gt 0 \, a\ne 1 \\ \text{(vi)} & \sin x & \cos x \\ \text{(vii)} & \cos x & -\sin x \\ \text{(viii)} & \tan x & \sec^2 x \\ \text{(xi)} & \sec x & \sec x \tan x \\ \text{(x)} & \text{cosec x} & -\text{cosec x}\cot x \\ \text{(xi)} & \cot x & -\text{cosec$^2$ }x \\ \text{(xii)} & \text{constant} & 0 \\ \text{(xiii)} & \sin^{-1}x & \dfrac{1}{\sqrt{1-x^2}} \,\, -1\lt x\lt 1 \\ \text{(xiv)} & \cos^{-1}x & \dfrac{-1}{\sqrt{1-x^2}} \,\, -1\lt x\lt 1\\ \text{(xv)} & \tan^{-1}x & \dfrac{1}{1+x^2} \, \, x \in R\\ \text{(xvi)} & \sec^{-1}x & \dfrac{1}{|x|\sqrt{x^2-1}} \,\, |x|\gt 1 \\ \text{(xvii)} & \text{cosec$^{-1}$}x & \dfrac{-1}{|x|\sqrt{x^2-1}}\,\, |x|\gt 1 \\ \text{(xviii)} & \cot^{-1}x & \dfrac{-1}{1+x^2}\, \, x \in R \\ \hline \end{array} \end{array}\)



4. LOGARITHMIC DIFFERENTIATION :

To find the derivative of :
(a) A function which is the product or quotient of a number of function or
(b) A function of the form \([f(x)]^{g (x)}\) where f & g are both derivable, it is convenient to take the logarithm of the function first & then differentiate.



5. DIFFERENTIATION OF IMPLICIT FUNCTION:

(a) Let function is \(\phi(x, y)=0\) then to find \(d y / d x\), in the case of implicit functions, we differentiate each term w.r.t. x regarding y as a functions of \(x\) & then collect terms in dy / dx together on one side to finally find \(\mathrm{dy} / \mathrm{dx}.\)
OR \(\dfrac{\mathrm{dy}}{\mathrm{dx}}=\dfrac{-\partial \phi / \partial \mathrm{x}}{\partial \phi / \partial \mathrm{y}}\) where \(\dfrac{\partial \phi}{\partial \mathrm{x}} \) & \(\dfrac{\partial \phi}{\partial \mathrm{y}}\) are partial differential coefficient of \(\phi(x, y)\) w.r.t \(x \)\(y\) respectively.

(b) In expression of \(\mathrm{dy} / \mathrm{dx}\) in the case of implicit functions, both x & y are present.



6. PARAMETRIC DIFFERENTIATION :

If \(y=f(\theta) \) & \(x=g(\theta)\) where \(\theta\) is a parameter, then \(\dfrac{d y}{d x}=\dfrac{d y / d \theta}{d x / d \theta}\).



7. DERIVATIVE OF A FUNCTIONW.R.T. ANOTHER FUNCTION:

Let \(y=f(x) ; \quad z=g(x)\), then \(\dfrac{d y}{d z}=\dfrac{d y / d x}{d z / d x}=\dfrac{f^{\prime}(x)}{g^{\prime}(x)}\)



8. DERIVATIVE OF A FUNCTION AND ITS INVERSE FUNCTION :

If inverse of \(y=f(x)\) is denoted as \(g(x)=f^{-1}(x)\), then \(g(f(x))=x\)
\(\Rightarrow g^{\prime}(f(x)) f^{\prime}(x)=1\)



9. HIGHER ORDER DERIVATIVE :

Let a function \(y=f(x)\) be defined on an open interval \((a, b)\). It's derivative, if it exists on \((\mathrm{a}, \mathrm{b})\) is a certain function \(\mathrm{f}^{\prime}(\mathrm{x})\) [or \((\mathrm{dy} / \mathrm{dx})\) or \(\left.y^{\prime}\right] \&\) it is called the first derivative of \(y\) w. r. t. \(x\). If it happens that the first derivative has a derivative on \((a, b)\) then this derivative is called second derivative of y  w.r.t.  x & is denoted by \(f^{\prime \prime}(x)\) or \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)\) or \(\mathrm{y}^{\prime \prime}\). Similarly, the \(3^{\text {rd }}\) order derivative of \(y\) w.r.t \(\mathrm{x}\), if it exists, is defined by \(\dfrac{d^{3} y}{d x^{3}}=\dfrac{d}{d x}\left(\dfrac{d^{2} y}{d x^{2}}\right) .\) It is also denoted by \(f^{\prime \prime \prime}(x)\) or \(y^{\prime \prime \prime} \) &  so on.



10. DIFFERENTIATION OF DETERMINANTS:

If \(F(x)=\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ l(x) & m(x) & n(x) \\ u(x) & v(x) & w(x)\end{array}\right|\), where \(f, g\), h. \(l, m, n, u, v, w\) are differentiable functions of \(\mathrm{x}\), then
\(F^{\prime}(x)=\left|\begin{array}{lll}f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l(x) & m(x) & n(x) \\ u(x) & v(x) & w(x)\end{array}\right|\)\(+\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ l^{\prime}(x) & m^{\prime}(x) & n^{\prime}(x) \\ u(x) & v(x) & w(x)\end{array}\right|\)\(+\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ l(x) & m(x) & n(x) \\ u^{\prime}(x) & v^{\prime}(x) & w^{\prime}(x)\end{array}\right|\)
Similarly one can also proceed column wise.



11. L' HÔPITAL'S RULE :

(a) Applicable while calculating limits of indeterminate forms of the type \(\dfrac{0}{0}, \dfrac{\infty}{\infty}\). If the function \(\mathrm{f}(\mathrm{x})\) and \(\mathrm{g}(\mathrm{x})\) are differentiable in certain neighbourhood of the point \(\mathrm{a}\), except, may be, at the point a itself, and \(g^{\prime}(x) \neq 0\), and if
\(\displaystyle \lim _{x \rightarrow a} f(x)=\displaystyle \lim _{x \rightarrow a} g(x)=0\) or \(\displaystyle \lim _{x \rightarrow a} f(x)=\displaystyle \lim _{x \rightarrow a} g(x)=\infty\),
then \(\displaystyle \lim _{x \rightarrow a} \dfrac{f(x)}{g(x)}=\displaystyle \lim _{x \rightarrow a} \dfrac{f^{\prime}(x)}{g^{\prime}(x)}\)
provided the limit \(\displaystyle \lim _{x \rightarrow a} \dfrac{\mathrm{f}^{\prime}(\mathrm{x})}{\mathrm{g}^{\prime}(\mathrm{x})}\) exists (L' Hôpital's rule). The point 'a' may be either finite or improper \(+\infty\) or \(-\infty\).

(b) Indeterminate forms of the type \(0 . \infty\) or \(\infty-\infty\) are reduced to forms of the type \(\dfrac{0}{0}\) or \(\dfrac{\infty}{\infty}\) by algebraic transformations.

(c) Indeterminate forms of the type \(1^{\infty}, \infty^{0}\) or \(0^{0}\) are reduced to forms of the type \(0 . \infty\) by taking logarithms or by the transformation \([f(x)]^{\phi(x)}=e^{\phi(x) \cdot\ln f(x)}\)




Comments

Popular posts from this blog

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of \(x\) such that \(F^{\prime}(x)\) \(=f(x)\) then the function \(F\) is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of \(\mathrm{f}(\mathrm{x})\) w.r.t. \(\mathrm{x}\) and is written symbolically as \(\displaystyle \int \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}\) \(=\mathrm{F}(\mathrm{x})+\mathrm{c} \Leftrightarrow \dfrac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{F}(\mathrm{x})+\mathrm{c}\}\) \(=\mathrm{f}(\mathrm{x})\) , where \(\mathrm{c}\) is called the constant of integration. Note : If \(\displaystyle \int f(x) d x\) \(=F(x)+c\) , then \(\displaystyle \int f(a x+b) d x\) \(=\dfrac{F(a x+b)}{a}+c, a \neq 0\) All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) \( \displaystyle \int(a x+b)^{n} d x\) \(=\dfrac{(a x+b)^{n+1}}{a(n+1)}+c ; n \neq-1\) (ii) \(\displaystyle \int \dfrac{d x}{a x+b}\) \(=\dfrac{1}{a} \ln|a x+b|+c\) (iii) \(\displaystyle \int e^{\mathrm{ax}+b} \mathrm{dx}\) \(=\dfrac{1}{...

Circle- Notes, Concept and All Important Formula

CIRCLE 1. DEFINITION : A circle is the locus of a point which moves in a plane in such a way that its distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is called the radius of the circle. All Chapter Notes, Concept and Important Formula 2. STANDARD EQUATIONS OF THE CIRCLE : (a) Central Form: If \((\mathrm{h}, \mathrm{k})\) is the centre and \(\mathrm{r}\) is the radius of the circle then its equation is \((\mathbf{x}-\mathbf{h})^{2}+(\mathbf{y}-\mathbf{k})^{2}=\mathbf{r}^{2}\) (b) General equation of circle : \(\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{2 g x}+\mathbf{2 f y}+\mathbf{c}=\mathbf{0}\) , where \(g, \mathrm{f}, c\) are constants and centre is \((-g,-f)\) i.e. \(\left(-\frac{\text { coefficient of } \mathrm{x}}{2},-\frac{\text { coefficient of } \mathrm{y}}{2}\right)\) and radius \(r=\sqrt{g^{2}+f^{2}-c}\) Note : The general quadratic equation in \(\mathrm{x}\) and \(\mathrm{y}\) , \(a x^{2}+b y^{2}+2 ...

Inverse Trigonometric function - Notes, Concept and All Important Formula

INVERSE TRIGONOMETRIC FUNCTION 1. DOMAIN, RANGE & GRAPH OFINVERSE TRIGONOMETRIC FUNCTIONS : (a) \(\mathrm{f}^{-1}:[-1,1] \rightarrow[-\pi / 2, \pi / 2]\) , \(\mathrm{f}^{-1}(\mathrm{x})=\sin ^{-1}(\mathrm{x})\) (b) \(\mathrm{f}^{-1}:[-1,1] \rightarrow[0, \pi]\) , \(\mathrm{f}^{-1}(\mathrm{x})=\cos ^{-1} \mathrm{x}\) (c) \(\mathrm{f}^{-1}: \mathrm{R} \rightarrow(-\pi / 2, \pi / 2)\) , \(\mathrm{f}^{-1}(\mathrm{x})=\tan ^{-1} \mathrm{x}\) (d) \(\mathrm{f}^{-1}: \mathrm{R} \rightarrow(0, \pi)\) \(\mathrm{f}^{-1}(\mathrm{x})=\cot ^{-1} \mathrm{x}\) (e) \(\mathrm{f}^{-1}:(-\infty,-1] \cup[1, \infty)\) \(\rightarrow[0, \pi / 2) \cup(\pi / 2, \pi]\) , \(\mathrm{f}^{-1}(\mathrm{x})=\sec ^{-1} \mathrm{x}\) (f) \(\mathrm{f}^{-1}:(-\infty,-1] \cup[1, \infty)\) \(\rightarrow[-\pi / 2,0) \cup(0, \pi / 2]\) \(\mathrm{f}^{-1}(\mathrm{x})=\operatorname{cosec}^{-1} \mathrm{x}\) All Chapter Notes, Concept and Important Formula 2. PROPERTIES OF INVERSE CIRCULAR FUNCTIONS: Property-1 : (i) \(y=\sin ...