Skip to main content

Complex Number - Notes, Concept and All Important Formula

COMPLEX NUMBER

1. DEFINITION :

Complex numbers are defined as expressions of the form \(a + ib\) where \(a, b \in R \quad \& i=\sqrt{-1}\). It is denoted by \(z\) i.e. \(z=a+i b\). 'a' is called real part of \(z(a=R e z)\) and ' \(b\) ' is called imaginary part of \(z(b=\operatorname{Im} z)\)

Definition of Complex number

Note :

(i) The set \(R\) of real numbers is a proper subset of the Complex Numbers. Hence the Complex Number system is \(N \subset W \subset I \subset Q \subset R \subset C\)

(ii) Zero is both purely real as well as purely imaginary but not imaginary.

(iii) \(i =\sqrt{-1}\) is called the imaginary unit. Also \(i ^{2}=-1 ;\, i ^{3}=- i\); \(i ^{4}=1\) etc.

(iv) \(\sqrt{a} \sqrt{b}=\sqrt{a b}\) only if atleast one of a or \(b\) is non-negative.




2. CONJUGATE COMPLEX :

If \(z=a+i b\) then its conjugate complex is obtained by changing the sign of its imaginary part \(\&\) is denoted by \(\bar{z}\). i.e. \(\bar{z}=a-i b\). Note that:

(i) \(\quad z+\bar{z}=2 \operatorname{Re}(z)\)

(ii) \(\quad z-\bar{z}=2 i \operatorname{Im}(z)\)

(iii) \(z \bar{z}=a^{2}+b^{2}\) which is real

(iv) If \(z\) is purely real then \(z-\bar{z}=0\)

(v) If \(z\) is purely imaginary then \(z+\bar{z}=0\)




3. REPRESENTATION OF A COMPLEX NUMBER IN VARIOUS FORMS:

(a) Cartesian Form (Geometrical Representation):

Every complex number \(z=x+\) iy can be

REPRESENTATION OF A COMPLEX NUMBER IN VARIOUS FORMS

represented by a point on the cartesian plane known as complex plane (Argand diagram) by the ordered pair \(( x , y )\).

Length OP is called modulus of the complex number denoted by \(|z| \)  & \(\theta\) is called the principal argument or amplitude, \((\theta \in(-\pi, \pi])\).

e.g. \(|z|=\sqrt{x^{2}+y^{2}}\) & \(\theta=\tan ^{-1} \frac{y}{x}\) (angle made by OP with positive \(x\) -axis), \(x >0\)

Geometrically \(|z|\) represents the distance of point \(P\) from origin. \((|z| \geq 0)\)

(b) Trigonometric / Polar Representation :

\(z=r(\cos \theta+i \sin \theta)\) where \(|z|=r\); \( \arg z=\theta \); \(\bar{z}=r(\cos \theta-i \sin \theta)\)

Note : \(\cos \theta+ i \sin \theta\) is also written as \(\operatorname{CiS} \theta\).

Euler's formula :

The formula \(e^{ ix }=\cos x + i \sin x\) is called Euler's formula. Also \(\cos x=\frac{e^{ ix }+e^{- ix }}{2} \, \& \, \sin x =\frac{e^{ ix }-e^{- ix }}{2 i }\) are known as Euler's identities.

(c) Exponential Representation :

Let \(z\) be a complex number such that \(|z|=r \, \&\) arg \(z=\theta\), then \(z=r \cdot e^{i \theta}\)




4. IMPORTANT PROPERTIES OF CONJUGATE :

(a) \(\overline{(\bar{z})}=z\)

(b) \(\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}\)

(c) \(\overline{z_{1}-z_{2}}=\bar{z}_{1}-\bar{z}_{2}\)

(d) \(\overline{z_{1} z_{2}}=\bar{z}_{1} \cdot \bar{z}_{2}\)

(e) \(\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\bar{z}_{1}}{\bar{z}_{2}} ; \quad z_{2} \neq 0\)

(f) If \(f\) is a polynomial with real coefficient such that \(f (\alpha+ i \beta)= x + i y\), then \(f (\alpha- i \beta)= x - i y\).




5. IMPORTANT PROPERTIES OF MODULUS :

(a) \(|z| \geq 0\)

(b) \(|z| \geq \operatorname{Re}(z)\)

(c) \(|z| \geq \operatorname{Im}(z)\)

(d) \(|z|=|\bar{z}|=|-z|=|-\bar{z}|\)

(e) \(z \bar{z}=|z|^{2}\)

(f) \(\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|\)

(g) \(\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}, \quad z_{2} \neq 0\)

(h) \(\left|z^{n}\right|=|z|^{n}\)

(i) \(\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)\)

or \(\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left|z_{1}\right|\left|z_{2}\right| \cos \left(\theta_{1}-\theta_{2}\right)\)

(j) \(\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left[\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right]\)

(k) ||\(z_{1}|-| z_{2}|| \leq\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \quad\) [Triangular Inequality]

(I) ||\(z_{1}|-| z_{2}|| \leq\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \quad[\) Triangular Inequality \(]\)

(m) If \(\left|z+\frac{1}{z}\right|=a(a>0)\), then \(\max |z|=\frac{a+\sqrt{a^{2}+4}}{2}\)

\(\& \min |z|=\frac{1}{2}\left(\sqrt{a^{2}+4}-a\right)\)




6. IMPORTANT PROPERTIES OF AMPLITUDE:

(a) (i) \(\operatorname{amp}\left(z_{1} \cdot z_{2}\right)=\operatorname{amp} z_{1}+\operatorname{amp} z_{2}+2 k \pi ; k \in I\)

(ii) \(\operatorname{amp}\left(\frac{z_{1}}{z_{2}}\right)=\operatorname{amp} z_{1}-\operatorname{amp} z_{2}+2 k \pi ; \quad k \in I\)

(iii) \(\operatorname{amp}\left(z^{n}\right)=n \operatorname{amp}(z)+2 k \pi\),

where proper value of \(k\) must be chosen so that RHS lies in \((-\pi, \pi]\).

(b) \(\log (z)=\log \left(r e^{i \theta}\right)=\log r+i \theta=\log |z|+i \operatorname{amp}(z)\)




7. DE'MOIVER'S THEOREM :

The value of \((\cos \theta+i \sin \theta)^{n}\) is \(\cos \theta+i \sin n \theta\) if 'n' is integer \(\&\) it is one of the values of \((\cos \theta+i \sin \theta)^{n}\) if \(n\) is a rational number of the form \(p / q\), where \(p\)  & \( q\) are co-prime.

Note : Continued product of roots of a complex quantity should be determined using theory of equation.




8. CUBE ROOT OF UNITY :

(a) The cube roots of unity are \(1, \omega=\frac{-1+ i \sqrt{3}}{2}=e^{ i 2 \pi / 3}\) & \(\omega^{2}=\frac{-1- i \sqrt{3}}{2}=e^{ i 4 \pi / 3}\)

(b) \(1+\omega+\omega^{2}=0, \omega^{3}=1\), in general

\(1+\omega^{ r }+\omega^{2 r }=\left[\begin{array}{l}0, r \text { is not integral multiple of } 3 \\ 3, r \text { is multiple of } 3\end{array}\right.\)

(c) \(a^{2}+b^{2}+c^{2}-a b-b c-c a\)\(=\left(a+b \omega+c \omega^{2}\right)\left(a+b \omega^{2}+c \omega\right)\)

\(a^{3}+b^{3}=(a+b)(a+\omega b)\left(a+\omega^{2} b\right)\)

\(a^{3}-b^{3}=(a-b)(a-\omega b)\left(a-\omega^{2} b\right)\)

\(x ^{2}+ x +1=( x -\omega)\left( x -\omega^{2}\right)\)




9. SQUARE ROOT OF COMPLEX NUMBER :

\(\begin{array}{l}\sqrt{a+i b}=\pm\left\{\frac{\sqrt{|z|+a}}{2}+i \frac{\sqrt{|z|-a}}{2}\right\} \text { for } b>0 \\\& \pm\left\{\frac{\sqrt{|z|+a}}{2}-i \frac{\sqrt{|z|-a}}{2}\right\} \text { for } b<0 \end{array}\)\( \text{where} |z|=\sqrt{a^{2}+b^{2}} .\)




10. ROTATION:

\(\dfrac{z_{2}-z_{0}}{\left|z_{2} z_{0}\right|}=\dfrac{z_{1}-z_{0}}{\left|z_{1}-z_{0}\right|} e^{i \theta}\)

Rotation of Complex number

Take \(\theta\) in anticlockwise direction




11. GEOMETRY IN COMPLEX NUMBER :

(a) Distance formula \(:\left|z_{1}-z_{2}\right|=\) distance between the points \(z _{1}\,  \& \, z _{2}\) on the Argand plane.

(b) Section formula : If \(z_{1}\,  \& \, z_{2}\) are two complex numbers then the complex number \(z =\dfrac{ nz _{1}+ mz _{2}}{ m + n }\) divides the join of \(z _{1}\, \& \, z _{2}\) in the ratio \(m : n\)

(c) If the vertices \(A, B, C\) of a triangle represent the complex numbers \(z _{1}, z _{2}, z _{3}\) respectively, then :

  • Centroid of the \(\Delta ABC =\dfrac{ z _{1}+ z _{2}+ z _{3}}{3}\)
  • Orthocentre of the \(\triangle ABC\) \(\begin{array}{l}=\dfrac{(a \sec A) z_{1}+(b \sec B) z_{2}+(c \sec C) z_{3}}{a \sec A+b \sec B+c \sec C} \\\text { or } \dfrac{z_{1} \tan A+z_{2} \tan B+z_{3}\tan C}{\tan A+\tan B+\tan C}\end{array}\)
  • Incentre of the \(\Delta ABC =\dfrac{\left( az _{1}+ bz _{2}+ cz _{3}\right)}{( a + b + c )}\)
  • Circumcentre of the \(\triangle ABC\)\(=\dfrac{\left(z_{1} \sin 2 A+z_{2} \sin 2 B+z_{3} \sin 2 C\right)}{(\sin 2 A+\sin 2 B+\sin 2 C)}\)





11. RESULT RELATED WITH TRIANGLE :

(a) Equilateral triangle :

\(\begin{array}{l}\dfrac{z_{1}-z_{2}}{\ell}=\dfrac{z_{3}-z_{2}}{\ell} e^{i \pi / 3} \\\text { Also } \dfrac{z_{2}-z_{3}}{\ell}=\dfrac{z_{1}-z_{3}}{\ell} \cdot e^{i \pi / 3} \quad \ldots \ldots \text { (ii) }\end{array}\)

RESULT RELATED WITH TRIANGLE IN COMPLEX NUMBER- EQUILATERAL TRIANGLE

from (i) & (ii)

\(\Rightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\)

or \(\dfrac{1}{z_{1}-z_{2}}+\dfrac{1}{z_{2}-z_{3}}+\dfrac{1}{z_{3}-z_{1}}=0\)

(b) Isosceles triangle :

RESULT RELATED WITH TRIANGLE IN COMPLEX NUMBER- ISOSCELES TRIANGLE

If then \(4 \cos ^{2} \alpha\left(z_{1}-z_{2}\right)\left(z_{3}-z_{1}\right)=\left(z_{3}-z_{2}\right)^{2}\)

(c) Area of triangle \(\triangle ABC\) given by modulus of \(\frac{1}{4}\left|\begin{array}{lll}z_{1} & \bar{z}_{1} & 1 \\ z_{2} & \bar{z}_{2} & 1 \\ z_{3} & \bar{z}_{3} & 1\end{array}\right|\)




12. EQUATION OF LINE THROUGH POINTS \(\mathbf{z_{1} \, \&\, z_{2}}\) :

\(\left|\begin{array}{lll}z & \bar{z} & 1 \\ z_{1} & \bar{z}_{1} & 1 \\ z_{2} & \bar{z}_{2} & 1\end{array}\right|=0\) \(\Rightarrow z\left(\bar{z}_{1}-\bar{z}_{2}\right)+\bar{z}\left(z_{2}-z_{1}\right)+z_{1} \bar{z}_{2}-\bar{z}_{1} z_{2}=0\)

\(\Rightarrow z\left(\bar{z}_{1}-\bar{z}_{2}\right) i+\bar{z}\left(z_{2}-z_{1}\right) i+i\left(z_{1} \bar{z}_{2}-\bar{z}_{1} z_{2}\right)=0\)

Let \(\left(z_{2}-z_{1}\right) i=a\), then equation of line is \(\boxed{\bar{a} z+a \bar{z}+b=0}\) where a \(C \, \& \, b \in R\)

Note:

(i) Complex slope of line joining points \(z_{1}\, \& \, z_{2}\) is \(\dfrac{\left(z_{2}-z_{1}\right)}{\left(\overline{z_{2}-z_{1}}\right)}\). Also note that slope of a line in Cartesian plane is different from complex slope of a line in Argand plane.

(ii) Complex slope of line \(\bar{a} z+a \bar{z}+b=0\) is \(-\dfrac{a}{\bar{a}}, b \in R\)

(iii) Two lines with complex slope \(\mu_{1} \, \& \, \mu_{2}\) are parallel or perpendicular if \(\mu_{1}=\mu_{2}\) or \(\mu_{1}+\mu_{2}=0\).

(iv) Length of perpendicular from point \(A (\alpha)\) to line \(\overline{ a } z + a \overline{ z }+ b =0\) is \(\dfrac{|\bar{a} \alpha+a \bar{\alpha}+b|}{2|a|}\).




13. EQUATION OF CIRCLE :

(a) Circle whose centre is \(z_{0} \) &  radius \(=r\)

       \(\left|z-z_{0}\right|=r\)

(b) General equation of circle is

      \(z \bar{z}+a \bar{z}+\bar{a} z+b=0\)

      centre '-a' & radius \(=\sqrt{| a |^{2}- b }\)

(c) Diameter form \(\left(z-z_{1}\right)\left(\bar{z}-\bar{z}_{2}\right)+\left(z-z_{2}\right)\left(\bar{z}-\bar{z}_{1}\right)=0\)

or \(\quad \arg \left(\frac{z-z_{1}}{z-z_{2}}\right)=\pm \frac{\pi}{2}\)

(d) Equation \(\left|\frac{z-z_{1}}{z-z_{2}}\right|=k\) represent a circle if \(k \neq 1\) and a straight line if \(k =1\)

(e) Equation \(\left|z-z_{1}\right|^{2}+\left|z-z_{2}\right|^{2}=k\)

EQUATION OF CIRCLE IN COMPLEX FORM
represent circle if \(k \geq \frac{1}{2}\left|z_{1}- z _{2}\right|^{2}\)

(f) \(\arg \left(\frac{z-z_{1}}{z-z_{2}}\right)=\alpha \quad 0<\alpha<\pi, \alpha \neq \frac{\pi}{2}\)

represent a segment of circle passing through \(A \left( z _{1}\right) \& B \left( z _{2}\right)\)




14. STANDARD LOCI :

(a) \(\left|z-z_{1}\right|+\left|z-z_{2}\right|=2 k\) (a constant) represent

  •  If \(2 k >\left| z _{1}- z _{2}\right| \quad \Rightarrow\) An ellipse
  •  If \(2 k =\left| z _{1}- z _{2}\right| \quad \Rightarrow A\) line segment
  •  If \(2 k <\left|z_{1}-z_{2}\right| \Rightarrow\) No solution

(b) Equation ||\(z-z_{1}|-| z-z_{2}||=2 k\) (a constant) represent

  •  If \(2 k <\left|z_{1}-z_{2}\right| \Rightarrow\) A hyperbola
  •  If \(2 k =\left| z _{1}- z _{2}\right| \quad \Rightarrow A\) line ray
  •  \(2 k >\left| z _{1}- z _{2}\right| \quad \Rightarrow\) No solution



Comments

Post a Comment

Popular posts from this blog

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of \(x\) such that \(F^{\prime}(x)\) \(=f(x)\) then the function \(F\) is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of \(\mathrm{f}(\mathrm{x})\) w.r.t. \(\mathrm{x}\) and is written symbolically as \(\displaystyle \int \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}\) \(=\mathrm{F}(\mathrm{x})+\mathrm{c} \Leftrightarrow \dfrac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{F}(\mathrm{x})+\mathrm{c}\}\) \(=\mathrm{f}(\mathrm{x})\) , where \(\mathrm{c}\) is called the constant of integration. Note : If \(\displaystyle \int f(x) d x\) \(=F(x)+c\) , then \(\displaystyle \int f(a x+b) d x\) \(=\dfrac{F(a x+b)}{a}+c, a \neq 0\) All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) \( \displaystyle \int(a x+b)^{n} d x\) \(=\dfrac{(a x+b)^{n+1}}{a(n+1)}+c ; n \neq-1\) (ii) \(\displaystyle \int \dfrac{d x}{a x+b}\) \(=\dfrac{1}{a} \ln|a x+b|+c\) (iii) \(\displaystyle \int e^{\mathrm{ax}+b} \mathrm{dx}\) \(=\dfrac{1}{...

Maxima and Minima Formula

In this topic we will learn important maxima and minima formula for JEE Mains and Advanced and also important for Class 12 board student. So lets explore important formula of maxima and minima .  MAXIMA-MINIMA Table Of Contents 1. INTRODUCTION : MAXIMA AND MINIMA: (a) Local Maxima /Relative maxima : A function f ( x ) is said to have a local maxima at x = a if f ( a ) ≥ f ( x ) ∀ x ∈ ( a − h , a + h ) ∩ D f(x) Where h is some positive real number. (b) Local Minima/Relative minima: A function f ( x ) is said to have a local minima at x = a if f ( a ) ≤ f ( x ) ∀ x ∈ ( a − h , a + h ) ∩ D f(x) Where h is some positive real number. (c) Absolute maxima (Global maxima): A function f has an absolute maxima (or global maxima) at c if f ( c ) ≥ f ( x ) for all x in D , where D is the domain of f . The number f ( c ) is called the maximum value of f on D . (d) Absolute minima (Global minima): A function f has an absolute minima at c if f ( c ) ≤ f ( x ) for all x in D and the numb...

Inverse Trigonometric function - Notes, Concept and All Important Formula

INVERSE TRIGONOMETRIC FUNCTION 1. DOMAIN, RANGE & GRAPH OFINVERSE TRIGONOMETRIC FUNCTIONS : (a) \(\mathrm{f}^{-1}:[-1,1] \rightarrow[-\pi / 2, \pi / 2]\) , \(\mathrm{f}^{-1}(\mathrm{x})=\sin ^{-1}(\mathrm{x})\) (b) \(\mathrm{f}^{-1}:[-1,1] \rightarrow[0, \pi]\) , \(\mathrm{f}^{-1}(\mathrm{x})=\cos ^{-1} \mathrm{x}\) (c) \(\mathrm{f}^{-1}: \mathrm{R} \rightarrow(-\pi / 2, \pi / 2)\) , \(\mathrm{f}^{-1}(\mathrm{x})=\tan ^{-1} \mathrm{x}\) (d) \(\mathrm{f}^{-1}: \mathrm{R} \rightarrow(0, \pi)\) \(\mathrm{f}^{-1}(\mathrm{x})=\cot ^{-1} \mathrm{x}\) (e) \(\mathrm{f}^{-1}:(-\infty,-1] \cup[1, \infty)\) \(\rightarrow[0, \pi / 2) \cup(\pi / 2, \pi]\) , \(\mathrm{f}^{-1}(\mathrm{x})=\sec ^{-1} \mathrm{x}\) (f) \(\mathrm{f}^{-1}:(-\infty,-1] \cup[1, \infty)\) \(\rightarrow[-\pi / 2,0) \cup(0, \pi / 2]\) \(\mathrm{f}^{-1}(\mathrm{x})=\operatorname{cosec}^{-1} \mathrm{x}\) All Chapter Notes, Concept and Important Formula 2. PROPERTIES OF INVERSE CIRCULAR FUNCTIONS: Property-1 : (i) \(y=\sin ...