Skip to main content

Quadratic Equation - Notes, Concept and All Important Formula

QUADRATIC EQUATION

1.  SOLUTION OF QUADRATIC EQUATION & RELATION BETWEEN ROOTS & CO-EFFICIENTS :

(a) The solutions of the quadratic equation, \(a x^{2}+b x+c=0\) is given by \(\mathbf{x =\dfrac{- b \pm \sqrt{ b ^{2}-4 a c }}{ 2 a }}\)

(b) The expression \(b^{2}-4 a c \equiv D\) is called the discriminant of the quadratic equation.

(c) If \(\alpha\, \& \, \beta\) are the roots of the quadratic equation \(a x^{2}+b x+c=0\), then;

(i) \(\alpha+\beta=-b / a\)    (ii) \(\alpha \beta= c / a\)    (iii) \(|\alpha-\beta|=\sqrt{ D } /| a |\)

(d) Quadratic equation whose roots are \(\alpha \)  &  \(\beta\) is \((x-\alpha)(x-\beta)=0\)

i.e.  \(x ^{2}-(\alpha+\beta) x +\alpha \beta=0\)  i.e.  \(x ^{2}-\) (sum of roots) \(x +\) product of roots \(=0\)

(e) If \(\alpha, \beta\) are roots of equation \(a x^{2}+b x+c=0\), we have identity in \(x\) as \(a x^{2}+b x+c=a(x-\alpha)(x-\beta)\)




2.  NATURE OF ROOTS :

(a) Consider the quadratic equation \(a x^{2}+b x+c=0\) where \(a, b\), \(c \in R \,\, \&\,\, a \neq 0\) then \(;\)

  • \(D >0 \Leftrightarrow\) roots are real & distinct (unequal).
  • \(D =0 \Leftrightarrow\) roots are real & coincident (equal)
  • \(D <0 \Leftrightarrow\) roots are imaginary.
  • If \(p + i q\) is one root of a quadratic equation, then the other root must be the conjugate \(p - i q\) & vice versa. \((p, q \in R \)  &  \(i=\sqrt{-1})\)

(b) Consider the quadratic equation \(a x^{2}+b x+c=0\) where \(a , b , c \in Q \,\, \&\,\,  a \neq 0\) then

  • If \(D\) is a perfect square, then roots are rational.
  • If \(\alpha= p +\sqrt{ q }\) is one root in this case, ( where \(p\) is rational \(\& \sqrt{ q }\) is a surd) then other root will be \(p -\sqrt{ q }\).



3. COMMON ROOTS OF TWO QUADRATIC EQUATIONS

(a) Atleast one common root.
Let \(\alpha\) be the common root of \(a x^{2}+b x+c=0\)  &  \(a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0\)
then \(a \alpha^{2}+b \alpha+c=0 \& a^{\prime} \alpha^{2}+b^{\prime} \alpha+c^{\prime}=0 .\) By Cramer's
Rule \(\dfrac{\alpha^{2}}{b c^{\prime}-b^{\prime} c}=\dfrac{\alpha}{a^{\prime} c-a c^{\prime}}=\dfrac{1}{a b^{\prime}-a^{\prime} b}\)
Therefore, \(\alpha=\dfrac{c a^{\prime}-c^{\prime} a}{a b^{\prime}-a^{\prime} b}=\dfrac{b c^{\prime}-b^{\prime} c}{a^{\prime} c-a c^{\prime}}\)
So the condition for a common root is \(\left(c a^{\prime}-c^{\prime} a\right)^{2}=\left(a b^{\prime}-a^{\prime} b\right)\left(b c^{\prime}-b^{\prime} c\right)\)

(b) If both roots are same then \(\dfrac{ a }{ a ^{\prime}}=\dfrac{ b }{ b ^{\prime}}=\dfrac{ c }{ c ^{\prime}}\)



4. ROOTS UNDER PARTICULAR CASES

Let the quadratic equation \(a x^{2}+b x+c=0\) has real roots and
(a) If \(b =0 \Rightarrow\) roots are of equal magnitude but of opposite sign.

(b) If \(c=0 \Rightarrow\) one roots is zero other is \(-b / a\).

(c) If \(a = c \Rightarrow\) roots are reciprocal to each other.

(d) If \(a c<0 \Rightarrow\) roots are of opposite signs.

(e) If \(\left.\begin{array}{r} a >0, b >0, c >0 \\ a <0, b <0, c <0\end{array}\right\} \Rightarrow\) both roots are negative.

(f) If \(\left.\begin{array}{r}a>0, b<0, c>0 \\ a<0, b>0, c<0\end{array}\right\}  \Rightarrow\) both roots are positive.

(g) If sign of \(a=\) sign of \(b \neq\) sign of \(c\) \(\Rightarrow\) Greater root in magnitude is negative.

(h) If sign of \(b=\) sign of \(c \neq\) sign of a
\(\Rightarrow\) Greater root in magnitude is positive.

(i) If \(a+b+c=0 \Rightarrow\) one root is 1 and second root is \(c / a\).



5. MAXIMUM & MINIMUM VALUES OF QUADRATIC EXPRESSION:

Maximum or Minimum Values of expression \(y=a x^{2}+b x+c\) is \(\dfrac{- D }{4 a }\) which occurs at \(x =-( b / 2 a )\) according as \(a <0\) or \(a >0 .\)

\(y \in\left[\dfrac{-D}{4 a}, \infty\right)\) if \(a>0 \quad \& \quad y \in\left(-\infty, \frac{-D}{4 a}\right]\) if \(a<0 .\)



6. LOCATION OF ROOTS :

Let \(f ( x )= ax ^{2}+ bx + c\), where \(a , b , c \in R , a \neq 0\)
(a) Conditions for both the roots of \(f ( x )=0\) to be greater than a specified number 'd' are \(\mathbf{D \geq 0}\) and \(\mathbf {a . f ( d )> 0 \,\, \& \,\, ( - b / 2 a )> d}\).
Conditions for both the roots of f (x)=0 to be greater than a specified number 'd'
(b) Condition for the both roots of \(f ( x )=0\) to lie on either side of the number 'd' in other words the number 'd' lies between the roots of \(f(x)=0\) is \(\mathbf{a . f ( d )< 0}.\)
Condition for the both roots of f(x)=0 to lie on either side of the number 'd'

(c) Condition for exactly one root of \(f ( x )=0\) to lie in the interval \(( d , e)\) i.e. \(d < x < e\) is \(\mathbf{f ( d ) \cdot f ( e )< 0}\)
Condition for exactly one root of f(x)=0 to lie in the interval (d , e)

(d) Conditions that both roots of \(f(x)=0\) to be confined between the numbers d & e are (here \(d < e ).\) 
\(\mathbf{D \geq 0}\) and \(\mathbf{a \cdot f ( d )> 0\,\,  \& \,\, a f ( e )> 0}\) and \(\mathbf{d <(- b / 2 a )< e}\)
Conditions that both roots of f(x)=0 to be confined between the numbers d & e






7. GENERAL QUADRATIC EXPRESSION IN TWO VARIABLES :

\(f(x, y)=a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c\) may be resolved into two linear factors if ;
\(\triangle = abc + 2fgh – af^2 – bg^2– ch^2= 0\)  OR   \(\left|\begin{array}{lll}a & h & g \\h & b & f \\g & f & c\end{array}\right|=0\)




8. THEORY OF EQUATIONS :

If \(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \ldots \ldots \alpha_{n}\) are the roots of the equation;
\(f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots . .+a_{n-1} x+a_{n}=0\)
where \(a _{0}, a _{1}, \ldots \ldots a _{ n }\) are constants \(a _{0} \neq 0\) then,
\(\begin{aligned}\sum \alpha_{1} &=-\frac{ a _{1}}{ a _{0}}, \, \sum\alpha_{1} \alpha_{2}=+\frac{ a _{2}}{ a _{0}},\, \sum \alpha_{1} \alpha_{2} \alpha_{3} \\&=-\frac{ a _{3}}{ a _{0}}, \ldots \ldots, \alpha_{1}\alpha_{2} \alpha_{3} \ldots \ldots \alpha_{ n }(-1)^{ n } \frac{ a _{ n }}{ a _{0}}\end{aligned}\)

Note:
(i) Every odd degree equation has at least one real root whose sign is opposite to that of its constant term, when coefficient of highest degree term is (+)ve {if not then make it (+)ve}.
\(\text { Ex.} \,\, x^{3}-x^{2}+x-1=0\)

(ii) Even degree polynomial whose constant term is (-)ve & coefficient of highest degree term is (+)ve has atleast two real roots, one (+)ve & one (-)ve.

(iii) If equation contains only even power of x & all coefficient are (+)ve, then all roots are imaginary.

(iv) Rational root theorem : If a rational number \(\dfrac{ p }{ q }\left( p , q \in Z _{0}\right)\) is a root of polynomial equation with integral coefficient \(a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots \ldots+a_{0}=0\), then \(p\) divides \(a_{0}\) and \(q\) divides \(a _{ n }\).      


Comments

Popular posts from this blog

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of \(x\) such that \(F^{\prime}(x)\) \(=f(x)\) then the function \(F\) is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of \(\mathrm{f}(\mathrm{x})\) w.r.t. \(\mathrm{x}\) and is written symbolically as \(\displaystyle \int \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}\) \(=\mathrm{F}(\mathrm{x})+\mathrm{c} \Leftrightarrow \dfrac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{F}(\mathrm{x})+\mathrm{c}\}\) \(=\mathrm{f}(\mathrm{x})\) , where \(\mathrm{c}\) is called the constant of integration. Note : If \(\displaystyle \int f(x) d x\) \(=F(x)+c\) , then \(\displaystyle \int f(a x+b) d x\) \(=\dfrac{F(a x+b)}{a}+c, a \neq 0\) All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) \( \displaystyle \int(a x+b)^{n} d x\) \(=\dfrac{(a x+b)^{n+1}}{a(n+1)}+c ; n \neq-1\) (ii) \(\displaystyle \int \dfrac{d x}{a x+b}\) \(=\dfrac{1}{a} \ln|a x+b|+c\) (iii) \(\displaystyle \int e^{\mathrm{ax}+b} \mathrm{dx}\) \(=\dfrac{1}{...

Circle- Notes, Concept and All Important Formula

CIRCLE 1. DEFINITION : A circle is the locus of a point which moves in a plane in such a way that its distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is called the radius of the circle. All Chapter Notes, Concept and Important Formula 2. STANDARD EQUATIONS OF THE CIRCLE : (a) Central Form: If \((\mathrm{h}, \mathrm{k})\) is the centre and \(\mathrm{r}\) is the radius of the circle then its equation is \((\mathbf{x}-\mathbf{h})^{2}+(\mathbf{y}-\mathbf{k})^{2}=\mathbf{r}^{2}\) (b) General equation of circle : \(\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{2 g x}+\mathbf{2 f y}+\mathbf{c}=\mathbf{0}\) , where \(g, \mathrm{f}, c\) are constants and centre is \((-g,-f)\) i.e. \(\left(-\frac{\text { coefficient of } \mathrm{x}}{2},-\frac{\text { coefficient of } \mathrm{y}}{2}\right)\) and radius \(r=\sqrt{g^{2}+f^{2}-c}\) Note : The general quadratic equation in \(\mathrm{x}\) and \(\mathrm{y}\) , \(a x^{2}+b y^{2}+2 ...

Straight Line - Notes, Concept and All Important Formula

STRAIGHT LINE Table Of Contents 1. RELATION BETWEEN CARTESIAN CO-ORDINATE & POLAR CO-ORDINATE SYSTEM If \((x, y)\) are Cartesian co-ordinates of a point \(P\) , then : \(x=r \cos \theta\) , \(y=r \sin \theta\) and \(r=\sqrt{x^{2}+y^{2}}, \quad \theta=\tan ^{-1}\left(\dfrac{y}{x}\right)\) All Chapter Notes, Concept and Important Formula 2. DISTANCE FORMULA AND ITS APPLICATIONS : If \(\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) and \(\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\) are two points, then \(\mathbf{A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}}\) Note : (i) Three given points \(A, B\) and \(C\) are collinear, when sum of any two distances out of \(\mathrm{AB}, \mathrm{BC}, \mathrm{CA}\) is equal to the remaining third otherwise the points will be the vertices of triangle. (ii) Let \(A, B, C \& D\) be the four given points in a plane. Then the quadrilateral will be: (a) Square if \(A B=B C=C D=D...