Skip to main content

Quadratic Equation - Notes, Concept and All Important Formula

QUADRATIC EQUATION

1.  SOLUTION OF QUADRATIC EQUATION & RELATION BETWEEN ROOTS & CO-EFFICIENTS :

(a) The solutions of the quadratic equation, \(a x^{2}+b x+c=0\) is given by \(\mathbf{x =\dfrac{- b \pm \sqrt{ b ^{2}-4 a c }}{ 2 a }}\)

(b) The expression \(b^{2}-4 a c \equiv D\) is called the discriminant of the quadratic equation.

(c) If \(\alpha\, \& \, \beta\) are the roots of the quadratic equation \(a x^{2}+b x+c=0\), then;

(i) \(\alpha+\beta=-b / a\)    (ii) \(\alpha \beta= c / a\)    (iii) \(|\alpha-\beta|=\sqrt{ D } /| a |\)

(d) Quadratic equation whose roots are \(\alpha \)  &  \(\beta\) is \((x-\alpha)(x-\beta)=0\)

i.e.  \(x ^{2}-(\alpha+\beta) x +\alpha \beta=0\)  i.e.  \(x ^{2}-\) (sum of roots) \(x +\) product of roots \(=0\)

(e) If \(\alpha, \beta\) are roots of equation \(a x^{2}+b x+c=0\), we have identity in \(x\) as \(a x^{2}+b x+c=a(x-\alpha)(x-\beta)\)




2.  NATURE OF ROOTS :

(a) Consider the quadratic equation \(a x^{2}+b x+c=0\) where \(a, b\), \(c \in R \,\, \&\,\, a \neq 0\) then \(;\)

  • \(D >0 \Leftrightarrow\) roots are real & distinct (unequal).
  • \(D =0 \Leftrightarrow\) roots are real & coincident (equal)
  • \(D <0 \Leftrightarrow\) roots are imaginary.
  • If \(p + i q\) is one root of a quadratic equation, then the other root must be the conjugate \(p - i q\) & vice versa. \((p, q \in R \)  &  \(i=\sqrt{-1})\)

(b) Consider the quadratic equation \(a x^{2}+b x+c=0\) where \(a , b , c \in Q \,\, \&\,\,  a \neq 0\) then

  • If \(D\) is a perfect square, then roots are rational.
  • If \(\alpha= p +\sqrt{ q }\) is one root in this case, ( where \(p\) is rational \(\& \sqrt{ q }\) is a surd) then other root will be \(p -\sqrt{ q }\).



3. COMMON ROOTS OF TWO QUADRATIC EQUATIONS

(a) Atleast one common root.
Let \(\alpha\) be the common root of \(a x^{2}+b x+c=0\)  &  \(a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0\)
then \(a \alpha^{2}+b \alpha+c=0 \& a^{\prime} \alpha^{2}+b^{\prime} \alpha+c^{\prime}=0 .\) By Cramer's
Rule \(\dfrac{\alpha^{2}}{b c^{\prime}-b^{\prime} c}=\dfrac{\alpha}{a^{\prime} c-a c^{\prime}}=\dfrac{1}{a b^{\prime}-a^{\prime} b}\)
Therefore, \(\alpha=\dfrac{c a^{\prime}-c^{\prime} a}{a b^{\prime}-a^{\prime} b}=\dfrac{b c^{\prime}-b^{\prime} c}{a^{\prime} c-a c^{\prime}}\)
So the condition for a common root is \(\left(c a^{\prime}-c^{\prime} a\right)^{2}=\left(a b^{\prime}-a^{\prime} b\right)\left(b c^{\prime}-b^{\prime} c\right)\)

(b) If both roots are same then \(\dfrac{ a }{ a ^{\prime}}=\dfrac{ b }{ b ^{\prime}}=\dfrac{ c }{ c ^{\prime}}\)



4. ROOTS UNDER PARTICULAR CASES

Let the quadratic equation \(a x^{2}+b x+c=0\) has real roots and
(a) If \(b =0 \Rightarrow\) roots are of equal magnitude but of opposite sign.

(b) If \(c=0 \Rightarrow\) one roots is zero other is \(-b / a\).

(c) If \(a = c \Rightarrow\) roots are reciprocal to each other.

(d) If \(a c<0 \Rightarrow\) roots are of opposite signs.

(e) If \(\left.\begin{array}{r} a >0, b >0, c >0 \\ a <0, b <0, c <0\end{array}\right\} \Rightarrow\) both roots are negative.

(f) If \(\left.\begin{array}{r}a>0, b<0, c>0 \\ a<0, b>0, c<0\end{array}\right\}  \Rightarrow\) both roots are positive.

(g) If sign of \(a=\) sign of \(b \neq\) sign of \(c\) \(\Rightarrow\) Greater root in magnitude is negative.

(h) If sign of \(b=\) sign of \(c \neq\) sign of a
\(\Rightarrow\) Greater root in magnitude is positive.

(i) If \(a+b+c=0 \Rightarrow\) one root is 1 and second root is \(c / a\).



5. MAXIMUM & MINIMUM VALUES OF QUADRATIC EXPRESSION:

Maximum or Minimum Values of expression \(y=a x^{2}+b x+c\) is \(\dfrac{- D }{4 a }\) which occurs at \(x =-( b / 2 a )\) according as \(a <0\) or \(a >0 .\)

\(y \in\left[\dfrac{-D}{4 a}, \infty\right)\) if \(a>0 \quad \& \quad y \in\left(-\infty, \frac{-D}{4 a}\right]\) if \(a<0 .\)



6. LOCATION OF ROOTS :

Let \(f ( x )= ax ^{2}+ bx + c\), where \(a , b , c \in R , a \neq 0\)
(a) Conditions for both the roots of \(f ( x )=0\) to be greater than a specified number 'd' are \(\mathbf{D \geq 0}\) and \(\mathbf {a . f ( d )> 0 \,\, \& \,\, ( - b / 2 a )> d}\).
Conditions for both the roots of f (x)=0 to be greater than a specified number 'd'
(b) Condition for the both roots of \(f ( x )=0\) to lie on either side of the number 'd' in other words the number 'd' lies between the roots of \(f(x)=0\) is \(\mathbf{a . f ( d )< 0}.\)
Condition for the both roots of f(x)=0 to lie on either side of the number 'd'

(c) Condition for exactly one root of \(f ( x )=0\) to lie in the interval \(( d , e)\) i.e. \(d < x < e\) is \(\mathbf{f ( d ) \cdot f ( e )< 0}\)
Condition for exactly one root of f(x)=0 to lie in the interval (d , e)

(d) Conditions that both roots of \(f(x)=0\) to be confined between the numbers d & e are (here \(d < e ).\) 
\(\mathbf{D \geq 0}\) and \(\mathbf{a \cdot f ( d )> 0\,\,  \& \,\, a f ( e )> 0}\) and \(\mathbf{d <(- b / 2 a )< e}\)
Conditions that both roots of f(x)=0 to be confined between the numbers d & e






7. GENERAL QUADRATIC EXPRESSION IN TWO VARIABLES :

\(f(x, y)=a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c\) may be resolved into two linear factors if ;
\(\triangle = abc + 2fgh – af^2 – bg^2– ch^2= 0\)  OR   \(\left|\begin{array}{lll}a & h & g \\h & b & f \\g & f & c\end{array}\right|=0\)




8. THEORY OF EQUATIONS :

If \(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \ldots \ldots \alpha_{n}\) are the roots of the equation;
\(f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots . .+a_{n-1} x+a_{n}=0\)
where \(a _{0}, a _{1}, \ldots \ldots a _{ n }\) are constants \(a _{0} \neq 0\) then,
\(\begin{aligned}\sum \alpha_{1} &=-\frac{ a _{1}}{ a _{0}}, \, \sum\alpha_{1} \alpha_{2}=+\frac{ a _{2}}{ a _{0}},\, \sum \alpha_{1} \alpha_{2} \alpha_{3} \\&=-\frac{ a _{3}}{ a _{0}}, \ldots \ldots, \alpha_{1}\alpha_{2} \alpha_{3} \ldots \ldots \alpha_{ n }(-1)^{ n } \frac{ a _{ n }}{ a _{0}}\end{aligned}\)

Note:
(i) Every odd degree equation has at least one real root whose sign is opposite to that of its constant term, when coefficient of highest degree term is (+)ve {if not then make it (+)ve}.
\(\text { Ex.} \,\, x^{3}-x^{2}+x-1=0\)

(ii) Even degree polynomial whose constant term is (-)ve & coefficient of highest degree term is (+)ve has atleast two real roots, one (+)ve & one (-)ve.

(iii) If equation contains only even power of x & all coefficient are (+)ve, then all roots are imaginary.

(iv) Rational root theorem : If a rational number \(\dfrac{ p }{ q }\left( p , q \in Z _{0}\right)\) is a root of polynomial equation with integral coefficient \(a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots \ldots+a_{0}=0\), then \(p\) divides \(a_{0}\) and \(q\) divides \(a _{ n }\).      


Comments

Popular posts from this blog

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of \(x\) such that \(F^{\prime}(x)\) \(=f(x)\) then the function \(F\) is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of \(\mathrm{f}(\mathrm{x})\) w.r.t. \(\mathrm{x}\) and is written symbolically as \(\displaystyle \int \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}\) \(=\mathrm{F}(\mathrm{x})+\mathrm{c} \Leftrightarrow \dfrac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{F}(\mathrm{x})+\mathrm{c}\}\) \(=\mathrm{f}(\mathrm{x})\) , where \(\mathrm{c}\) is called the constant of integration. Note : If \(\displaystyle \int f(x) d x\) \(=F(x)+c\) , then \(\displaystyle \int f(a x+b) d x\) \(=\dfrac{F(a x+b)}{a}+c, a \neq 0\) All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) \( \displaystyle \int(a x+b)^{n} d x\) \(=\dfrac{(a x+b)^{n+1}}{a(n+1)}+c ; n \neq-1\) (ii) \(\displaystyle \int \dfrac{d x}{a x+b}\) \(=\dfrac{1}{a} \ln|a x+b|+c\) (iii) \(\displaystyle \int e^{\mathrm{ax}+b} \mathrm{dx}\) \(=\dfrac{1}{...

Trigonometry Equation - Notes, Concept and All Important Formula

TRIGONOMETRIC EQUATION 1. TRIGONOMETRIC EQUATION : An equation involving one or more trigonometrical ratios of unknown angles is called a trigonometric equation. All Chapter Notes, Concept and Important Formula 2. SOLUTION OF TRIGONOMETRIC EQUATION : A value of the unknown angle which satisfies the given equations is called a solution of the trigonometric equation. (a) Principal solution :- The solution of the trigonometric equation lying in the interval \([0,2 \pi]\) . (b) General solution :- Since all the trigonometric functions are many one & periodic, hence there are infinite values of \(\theta\) for which trigonometric functions have the same value. All such possible values of \(\theta\) for which the given trigonometric function is satisfied is given by a general formula. Such a general formula is called general solutions of trigonometric equation. 3. GENERAL SOLUTIONS OF SOME TRIGONOMETRICE EQUATIONS (TO BE REMEMBERED) :   (a) If \(\sin \theta=0\) , then \(\theta=...

Trigonometry Ratios and Identities - Notes, Concept and All Important Formula

TRIGONOMETRIC RATIOS & IDENTITIES Table Of Contents 1. RELATION BETWEEN SYSTEM OF MEASUREMENT OF ANGLES : \(\dfrac{D}{90}=\dfrac{G}{100}=\dfrac{2 C}{\pi}\) 1 Radian \(=\dfrac{180}{\pi}\) degree \(\approx 57^{\circ} 17^{\prime} 15^{\prime \prime}\) (approximately) 1 degree \(=\dfrac{\pi}{180}\) radian \(\approx 0.0175\) radian All Chapter Notes, Concept and Important Formula 2. BASIC TRIGONOMETRIC IDENTITIES : (a) \(\sin ^{2} \theta+\cos ^{2} \theta=1\) or \(\sin ^{2} \theta=1-\cos ^{2} \theta\) or \(\cos ^{2} \theta=1-\sin ^{2} \theta\) (b) \(\sec ^{2} \theta-\tan ^{2} \theta=1\) or \(\sec ^{2} \theta=1+\tan ^{2} \theta\) or \(\tan ^{2} \theta=\sec ^{2} \theta-1\) (c) If \(\sec \theta+\tan \theta\) \(=\mathrm{k} \Rightarrow \sec \theta-\tan \theta\) \(=\dfrac{1}{\mathrm{k}} \Rightarrow 2 \sec \theta\) \(=\mathrm{k}+\dfrac{1}{\mathrm{k}}\) (d) \(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1\) or \(\operatorname{cosec}^{2} \theta=1+\cot ^{2} \th...