BINOMIAL THEOREM
(x+y)n=nC0xn+nC1xn−1y+nC2xn−2y2+…..+nCrxn−ryr+…..+nCnyn =n∑r=0nCrxn−ryr, where n∈N.
1. IMPORTANT TERMS IN THE BINOMIAL EXPANSION ARE :
(a) General term: The general term or the (r+1)th term in the expansion of (x+y)n is given by
Tr+1=nCrxn⋅r⋅yr
(b) Middle term :
The middle term (s) is the expansion of (x+y)n is (are) :
(i) If n is even, there is only one middle term which is given by T(n+2)/2=nCn/2⋅xn/2⋅yn/2
(ii) If n is odd, there are two middle terms which are T(n+1)/2 & T[(n+1)/2]+1
(c) Term independent of x :
Term independent of x contains no x; Hence find the value of r for which the exponent of x is zero.
2. SOME RESULTS ON BINOMIAL COEFFICIENTS :
(a) nCx=nCy⇒x=y or x+y=n
(b) nCr−1+nCr=n+1Cr
(c) C0+C1+C2+……=Cn=2n,Cr=nCr
(d) C0+C2+C4+……=C1+C3+C5+……=2n−1,Cr =nCr
(e) C20+C21+C22+……+C2n=2nCn=(2n)!n!n!,Cr=nCr
3. Greatest coefficient & greatest term in expansion of (x+a)n :
(a) If n is even, greatest binomial coefficient is nCn/2
If n is odd, greatest binomial coefficient is nCn−12 or nCn+12
(b) For greatest term :
Greatest Term ={Tp&Tp+1if n+1|xa|+1 is an integer equal to pTq+1if n+1|xa|+1is a non integer & ∈(q,q+1),q∈I
4. BINOMIAL THEOREM FOR NEGATIVE OR FRACTIONAL INDICES:
If n∈R, then (1+x)n =1+nx+n(n−1)2!x2+n(n−1)(n−2)3!x3+… ∞ provided |x|<1
Note :
(i) (1−x)−1=1+x+x2+x3+…………∞
(ii) (1+x)−1=1−x+x2−x3+…………∞
(iii) (1−x)−2=1+2x+3x2+4x3+…………∞
(iv) (1+x)−2=1−2x+3x2−4x3+…………∞
5. EXPONENTIAL SERIES :
(a) ex=1+x1!+x22!+x33!+…….∞; where x may be any real or complex number & e=limn→∞(1+1n)n
(b) ax=1+x1!lna+x22!ln2a+x33!ln3a+……∞, where a>0
6. LOGARITHMIC SERIES :
(a) ln(1+x)=x−x22+x33−x44+……∞, where −1<x≤1
(b) ln(1−x)=−x−x22−x33−x44−…….∞, where −1≤x<1
(c) ln(1+x)(1−x)=2(x+x33+x55+…….∞),|x|<1
Comments
Post a Comment