Skip to main content

Binomial Theorem - Notes, Concept and All Important Formula

BINOMIAL THEOREM

\((x+y)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1} y+{ }^{n} C_{2} x^{n-2} y^{2}+\ldots\)\( . .+{ }^{n} C_{r} x^{n-r} y^{r}+\ldots\)\( . .+{ }^{n} C_{n} y^{n}\) \(=\displaystyle \sum_{ r =0}^{ n }{ }^{ n } C _{ r } x ^{ n - r } y ^{ r }\), where \(n \in N\).

1. IMPORTANT TERMS IN THE BINOMIAL EXPANSION ARE :

(a) General term: The general term or the \((r+1)^{\text {th }}\) term in the expansion of \((x+y)^{n}\) is given by

\(T _{ r +1}={ }^{ n } C _{ r } x ^{ n \cdot r } \cdot y ^{r}\)

(b) Middle term :

The middle term (s) is the expansion of \((x+y)^{n}\) is (are) :

(i) If \(n\) is even, there is only one middle term which is given by \(T _{( n +2) / 2}={ }^{ n } C _{ n / 2} \cdot x ^{ n / 2} \cdot y ^{ n / 2}\)

(ii) If \(n\) is odd, there are two middle terms which are \(T _{( n +1) / 2}\) & \(T _{[( n +1) / 2]+1}\)

(c) Term independent of x :

Term independent of \(x\) contains no \(x\); Hence find the value of r for which the exponent of \(x\) is zero.




2. SOME RESULTS ON BINOMIAL COEFFICIENTS :

(a) \({ }^{n} C_{x}={ }^{n} C_{y} \Rightarrow x=y\) or \(x+y=n\)

(b) \({ }^{ n } C _{ r -1}+{ }^{ n } C _{ r }={ }^{ n +1} C _{ r }\)

(c) \(C _{0}+ C _{1}+ C _{2}+\ldots \ldots= C _{ n }=2^{ n }, C _{ r }={ }^{ n } C _{ r }\)

(d) \(C _{0}+ C _{2}+ C _{4}+\ldots \)\(\ldots= C _{1}+ C _{3}+ C _{5}+\ldots\)\( \ldots=2^{ n -1}, C _{ r }\) \( ={ }^{ n } C _{ r }\)

(e) \(C _{0}^{2}+ C _{1}^{2}+ C _{2}^{2}+\ldots \)\(\ldots+ C _{ n }^{2}\)\(={ }^{2 n} C _{ n }\)\(=\dfrac{(2 n ) !}{ n ! n !}, C _{ r }\)\(={ }^{ n } C _{ r }\)




3. Greatest coefficient & greatest term in expansion of \((x+a)^{n}\) :

(a) If \(n\) is even, greatest binomial coefficient is \({ }^{n} C_{n / 2}\)

If \(n\) is odd, greatest binomial coefficient is \({ }^{ n } C _{\frac{ n -1}{2}}\) or \({ }^{ n } C _{\frac{ n +1}{2}}\)

(b) For greatest term :

Greatest Term \(= \begin{cases}T_p \,\&\, T_{p+1} & \text{if $ \frac{n+1}{\left|\frac{x}{a}\right|+1}$ is an integer equal to p}\\T_{q+1} & \text{if $ \frac{n+1}{\left| \frac{x}{a}\right|+1}$is a non integer & $\in (q,q+1), $} \\& \text{$q\in I$} \end{cases}\)




4. BINOMIAL THEOREM FOR NEGATIVE OR FRACTIONAL INDICES:

If \(n \in R\), then \((1+x)^{n}\) \(=1+n x+\dfrac{n(n-1)}{2 !} x^{2}+\dfrac{n(n-1)(n-2)}{3 !} x^{3}+\ldots\) \(\infty\) provided \(|x|<1\)

Note :

(i) \((1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots \ldots \ldots \ldots \infty\)

(ii) \((1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots \ldots \ldots \ldots \infty\)

(iii) \((1-x)^{-2}=1+2 x+3 x^{2}+4 x^{3}+\ldots \ldots \ldots \ldots \infty\)

(iv) \((1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+\ldots \ldots \ldots \ldots \infty\)




5. EXPONENTIAL SERIES :

(a) \(e^{x}=1+\dfrac{x}{1 !}+\dfrac{x^{2}}{2 !}+\dfrac{x^{3}}{3 !}+\ldots \ldots . \infty ;\) where \(x\) may be any real or complex number & \(e=\displaystyle \lim_{n \rightarrow \infty}\left(1+\dfrac{1}{n}\right)^{n}\)

(b) \(a ^{ x }=1+\dfrac{ x }{1 !} \ln a +\dfrac{ x ^{2}}{2 !} \ln ^{2} a +\dfrac{ x ^{3}}{3 !} \ln ^{3} a +\ldots \ldots \infty\), where \(a >0\)




6. LOGARITHMIC SERIES :

(a) \(\ln (1+x)=x-\dfrac{x^{2}}{2}+\dfrac{x^{3}}{3}-\dfrac{x^{4}}{4}+\ldots \ldots \infty\), where \(-1<x \leq 1\)

(b) \(\ln (1- x )=- x -\dfrac{ x ^{2}}{2}-\dfrac{ x ^{3}}{3}-\dfrac{ x ^{4}}{4}-\ldots \ldots . \infty\), where \(-1 \leq x <1\)

(c) \(\ln \dfrac{(1+ x )}{(1- x )}=2\left( x +\dfrac{ x ^{3}}{3}+\dfrac{ x ^{5}}{5}+\ldots \ldots . \infty\right),| x |<1\)




Comments

Popular posts from this blog

Indefinite Integration - Notes, Concept and All Important Formula

INDEFINITE INTEGRATION If  f & F are function of \(x\) such that \(F^{\prime}(x)\) \(=f(x)\) then the function \(F\) is called a PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL of \(\mathrm{f}(\mathrm{x})\) w.r.t. \(\mathrm{x}\) and is written symbolically as \(\displaystyle \int \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}\) \(=\mathrm{F}(\mathrm{x})+\mathrm{c} \Leftrightarrow \dfrac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{F}(\mathrm{x})+\mathrm{c}\}\) \(=\mathrm{f}(\mathrm{x})\) , where \(\mathrm{c}\) is called the constant of integration. Note : If \(\displaystyle \int f(x) d x\) \(=F(x)+c\) , then \(\displaystyle \int f(a x+b) d x\) \(=\dfrac{F(a x+b)}{a}+c, a \neq 0\) All Chapter Notes, Concept and Important Formula 1. STANDARD RESULTS : (i) \( \displaystyle \int(a x+b)^{n} d x\) \(=\dfrac{(a x+b)^{n+1}}{a(n+1)}+c ; n \neq-1\) (ii) \(\displaystyle \int \dfrac{d x}{a x+b}\) \(=\dfrac{1}{a} \ln|a x+b|+c\) (iii) \(\displaystyle \int e^{\mathrm{ax}+b} \mathrm{dx}\) \(=\dfrac{1}{...

Logarithm - Notes, Concept and All Important Formula

LOGARITHM LOGARITHM OF A NUMBER : The logarithm of the number \(\mathrm{N}\) to the base ' \(\mathrm{a}\) ' is the exponent indicating the power to which the base 'a' must be raised to obtain the number \(\mathrm{N}\) . This number is designated as \(\log _{\mathrm{a}} \mathrm{N}\) . (a) \(\log _{a} \mathrm{~N}=\mathrm{x}\) , read as \(\log\) of \(\mathrm{N}\) to the base \(\mathrm{a} \Leftrightarrow \mathrm{a}^{\mathrm{x}}=\mathrm{N}\) . If \(a=10\) then we write \(\log N\) or \(\log _{10} \mathrm{~N}\) and if \(\mathrm{a}=e\) we write \(\ln N\) or \(\log _{e} \mathrm{~N}\) (Natural log) (b) Necessary conditions : \(\mathrm{N}> \,\,0 ; \,\, \mathrm{a}> \,\,0 ; \,\, \mathrm{a} \neq 1\) (c) \(\log _{a} 1=0\) (d) \(\log _{a} a=1\) (e) \(\log _{1 / a} a=-1\) (f) \(\log _{a}(x . y)=\log _{a} x+\log _{a} y ; \,\, x, y> \,\,0\) (g) \(\log _{a}\left(\dfrac{\mathrm{x}}{y}\right)=\log _{\mathrm{a}} \mathrm{x}-\log _{\mathrm{a}} \mathrm{y} ; \,\, \mathrm{...

Trigonometry Equation - Notes, Concept and All Important Formula

TRIGONOMETRIC EQUATION 1. TRIGONOMETRIC EQUATION : An equation involving one or more trigonometrical ratios of unknown angles is called a trigonometric equation. All Chapter Notes, Concept and Important Formula 2. SOLUTION OF TRIGONOMETRIC EQUATION : A value of the unknown angle which satisfies the given equations is called a solution of the trigonometric equation. (a) Principal solution :- The solution of the trigonometric equation lying in the interval \([0,2 \pi]\) . (b) General solution :- Since all the trigonometric functions are many one & periodic, hence there are infinite values of \(\theta\) for which trigonometric functions have the same value. All such possible values of \(\theta\) for which the given trigonometric function is satisfied is given by a general formula. Such a general formula is called general solutions of trigonometric equation. 3. GENERAL SOLUTIONS OF SOME TRIGONOMETRICE EQUATIONS (TO BE REMEMBERED) :   (a) If \(\sin \theta=0\) , then \(\theta=...